Optimum Performance of Extractive Desulfurization of Liquid Fuels Using Phosphonium and Pyrrolidinium-Based Ionic Liquids

2015 ◽  
Vol 54 (25) ◽  
pp. 6540-6550 ◽  
Author(s):  
Omar U. Ahmed ◽  
Farouq S. Mjalli ◽  
Talal Al-Wahaibi ◽  
Yahya Al-Wahaibi ◽  
Inas M. AlNashef
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende

A new class of green solvents, known as ionic liquids (ILs), has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT) to test the desulfurization efficiency. [Bmim]Cl/FeCl3was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.


2015 ◽  
Vol 401 ◽  
pp. 102-109 ◽  
Author(s):  
Omar U. Ahmed ◽  
Farouq S. Mjalli ◽  
Ashish M. Gujarathi ◽  
Talal Al-Wahaibi ◽  
Yahya Al-Wahaibi ◽  
...  
Keyword(s):  

2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Bilal Kazmi ◽  
Awan Zahoor ◽  
Hashmi Saud ◽  
Zafar Khan Ghouri

In this work we examined the industrial scale extraction process of ultra-low sulfur diesel with the help of simulation software ASPEN Plus®. This work focuses on the [Cnmim] [BF4] (imidazolium-based) ionic liquid and employed it in the extractive desulfurization of the dibenzothiophene (DBT) from the model diesel fuel under a very mild process condition. UNIFAC (uniquasi functional activity) was chosen as the thermodynamic method to model the ionic liquid on ASPEN Plus® and different physical and chemical properties were then taken from the literature to be incorporated in the simulation model. Different parametric analysis was studied for the removal of thiophene-based compounds from the model diesel. The results acquired shows the significance of imidazolium-based ionic liquids (ILs) for the extraction of S-contents from the liquid fuels at an optimal process conditions of 40 ℃ and 2 bar pressure with the 2.8: 1 ratio of ionic liquid and model diesel which validates the experimental results obtained previously in the literature.


2011 ◽  
Vol 287-290 ◽  
pp. 1585-1590 ◽  
Author(s):  
Yong Shui Qu ◽  
Yan Lei Song ◽  
Chong Pin Huang ◽  
Jie Zhang ◽  
Biao Hua Chen

The preparation of 5-hydroxymethylfurfural (5-HMF) through the dehydration of fructose with room temperature ionic liquids (ILs) has received much attention as a way of producing liquid fuels from renewable resources, but the cost of the process is considerably increased with IL as a solvent rather than as a catalyst. In this work, we have shown that the alkaline Ionic Liquid, 1-Butyl-3-methylimidazolium Hydroxide ([BMIM]OH), can be used as a catalyst in the conversion of fructose to 5-HMF. The maximum yield of 5-HMF was 91.6% at 160 °C after 8 h using dimethylsulfoxide (DMSO) as solvent, and the ketose is more easily dehydrated than aldose in this catalyst system.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 475 ◽  
Author(s):  
Francesca D’Anna ◽  
Maria Luisa Grilli ◽  
Rita Petrucci ◽  
Marta Feroci

This review deals with the notable results obtained by the synergy between ionic liquids (ILs) and WO3 in the field of pollutant gas sensing and sulfur removal pretreatment of fuels. Starting from the known characteristics of tungsten trioxide as catalytic material, many authors have proposed the use of ionic liquids in order to both direct WO3 production towards controllable nanostructures (nanorods, nanospheres, etc.) and to modify the metal oxide structure (incorporating ILs) in order to increase the gas adsorption ability and, thus, the catalytic efficiency. Moreover, ionic liquids are able to highly disperse WO3 in composites, thus enhancing the contact surface and the catalytic ability of WO3 in both hydrodesulfurization (HDS) and oxidative desulfurization (ODS) of liquid fuels. In particular, the use of ILs in composite synthesis can direct the hydrogenation process (HDS) towards sulfur compounds rather than towards olefins, thus preserving the octane number of the fuel while highly reducing the sulfur content and, thus, the possibility of air pollution with sulfur oxides. A similar performance enhancement was obtained in ODS, where the high dispersion of WO3 (due to the use of ILs during the synthesis) allows for noteworthy results at very low temperatures (50 °C).


2016 ◽  
Vol 12 (2) ◽  
pp. 105
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende

2014 ◽  
Vol 53 (51) ◽  
pp. 19845-19854 ◽  
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende ◽  
Chang Kyoo Yoo

Sign in / Sign up

Export Citation Format

Share Document