scholarly journals Desulfurization Of The Dibenzothiophene (DBT) By Using Imidazolium-Based Ionic Liquids(Ils)

2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Bilal Kazmi ◽  
Awan Zahoor ◽  
Hashmi Saud ◽  
Zafar Khan Ghouri

In this work we examined the industrial scale extraction process of ultra-low sulfur diesel with the help of simulation software ASPEN Plus®. This work focuses on the [Cnmim] [BF4] (imidazolium-based) ionic liquid and employed it in the extractive desulfurization of the dibenzothiophene (DBT) from the model diesel fuel under a very mild process condition. UNIFAC (uniquasi functional activity) was chosen as the thermodynamic method to model the ionic liquid on ASPEN Plus® and different physical and chemical properties were then taken from the literature to be incorporated in the simulation model. Different parametric analysis was studied for the removal of thiophene-based compounds from the model diesel. The results acquired shows the significance of imidazolium-based ionic liquids (ILs) for the extraction of S-contents from the liquid fuels at an optimal process conditions of 40 ℃ and 2 bar pressure with the 2.8: 1 ratio of ionic liquid and model diesel which validates the experimental results obtained previously in the literature.

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende

A new class of green solvents, known as ionic liquids (ILs), has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT) to test the desulfurization efficiency. [Bmim]Cl/FeCl3was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.


2013 ◽  
Vol 675 ◽  
pp. 248-251
Author(s):  
Zhuo Li ◽  
Chang Ping Li

As a new environmentally friendly solvent, ionic liquids have been investigated widely. The lack of physico-chemical properties data of ionic liquids has become a bottleneck that restricts their applications. In this study, the investigation of the density for binary mixtures of CnpyNTf2 (n = 2, 4, 5) and methanol is measured using Westphal balance. This study would be very important for the application of binary mixtures of ionic liquid and methanol in developing new energy storage material.


2014 ◽  
Vol 16 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
Karolina Matuszek ◽  
Anna Chrobok ◽  
Fergal Coleman ◽  
Kenneth R. Seddon ◽  
Małgorzata Swadźba-Kwaśny

The speciation of a family of inexpensive, easily prepared protonic ionic liquids, their physico-chemical properties and their performance as catalysts in the model esterification reaction have been correlated.


2013 ◽  
Vol 830 ◽  
pp. 163-166 ◽  
Author(s):  
Ri Na Wu ◽  
Hu Zhu ◽  
Bei Hai He

Dissolution of absorbent cotton (DP above 4000) using ionic liquids as solvent and regeneration was investigated. The results show that 1-ally-3-methylimidazolium chloride (AMIMCl) was a good solvent to dissolve absorbent cotton and a solution of 3 wt% can be reached in 18 min at 120°C. Besides, as the dissolving temperature increased the time needed for the cotton linters to dissolve decreased. The physic-chemical properties of the regenerated cellulose films were also characterized by XRD, FTIR and TGA analysis.


2011 ◽  
Vol 287-290 ◽  
pp. 1585-1590 ◽  
Author(s):  
Yong Shui Qu ◽  
Yan Lei Song ◽  
Chong Pin Huang ◽  
Jie Zhang ◽  
Biao Hua Chen

The preparation of 5-hydroxymethylfurfural (5-HMF) through the dehydration of fructose with room temperature ionic liquids (ILs) has received much attention as a way of producing liquid fuels from renewable resources, but the cost of the process is considerably increased with IL as a solvent rather than as a catalyst. In this work, we have shown that the alkaline Ionic Liquid, 1-Butyl-3-methylimidazolium Hydroxide ([BMIM]OH), can be used as a catalyst in the conversion of fructose to 5-HMF. The maximum yield of 5-HMF was 91.6% at 160 °C after 8 h using dimethylsulfoxide (DMSO) as solvent, and the ketose is more easily dehydrated than aldose in this catalyst system.


RSC Advances ◽  
2016 ◽  
Vol 6 (66) ◽  
pp. 61566-61575 ◽  
Author(s):  
A. Vasanthakumar ◽  
I. Bahadur ◽  
G. Redhi ◽  
R. M. Gengan

Important physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the nature of the cation or anion.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 480
Author(s):  
Ahmad Adlie Shamsuri ◽  
Siti Nurul Ain Md. Jamil ◽  
Khalina Abdan

Ionic liquids can typically be synthesized via protonation, alkylation, metathesis, or neutralization reactions. The many types of ionic liquids have increased their attractiveness to researchers for employment in various areas, including in polymer composites. Recently, ionic liquids have been employed to modify nanofillers for the fabrication of polymer nanocomposites with improved physicochemical properties. In this succinct review, four types of imidazolium-based ionic liquids that are employed as modifiers—specifically alkylimidazolium halide, alkylimidazolium hexafluorophosphate, alkylimidazolium tetrafluoroborate, and alkylimidazolium bistriflimide—are reviewed. Additionally, three types of ionic liquid-modified nanofiller/polymer nanocomposites—namely ionic liquid-nanofiller/thermoplastic nanocomposites, ionic liquid-nanofiller/elastomer nanocomposites, and ionic liquid-nanofiller/thermoset nanocomposites—are described as well. The effect of imidazolium-based ionic liquids on the thermo-mechanico-chemical properties of the polymer nanocomposites is also succinctly reviewed. This review can serve as an initial guide for polymer composite researchers in modifying nanofillers by means of ionic liquids for improving the performance of polymer nanocomposites.


2018 ◽  
Vol 20 (33) ◽  
pp. 21262-21268 ◽  
Author(s):  
Shohei Horike ◽  
Masato Ayano ◽  
Masahiro Tsuno ◽  
Tatsuya Fukushima ◽  
Yasuko Koshiba ◽  
...  

The low volatility of ionic liquids (ILs) is one of their most interesting physico-chemical properties; however, the general understanding of their evaporation dynamics under vacuum is still lagging.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowei Sun ◽  
Zhimin Jin ◽  
Lei Yang ◽  
Jingwei Hao ◽  
Yuangang Zu ◽  
...  

An ionic liquid-based ultrasonic-assisted extraction method has been developed for the effective extraction of procyanidins fromLarix gmeliniibark. So as to evaluate the performance of ionic liquids in ultrasonic-assisted extraction process, the effects caused by changes in the anion and the alkyl chain length of the cation on the extraction efficiency were investigated in this paper. The results indicated that the characteristics of anions had remarkable effects on the extraction efficiency of procyanidins, and 1-butyl-3-methylimidazolium bromide ([Bmim]Br) aqueous solution was the best among the investigated ionic liquids. The optimum conditions for the extraction were as follows: [Bmim]Br concentration 1.25 M, soak time 3 h, solid-liquid ratio 1 : 10, ultrasonic power 150 W, and ultrasonic time 30 min. This work not only introduces a simple, green, and highly efficient sample preparation method for extraction of procyanidins fromL. gmeliniibark, but also reveals the tremendous application potential of ionic liquids.


2014 ◽  
Vol 16 (44) ◽  
pp. 24359-24372 ◽  
Author(s):  
M. T. Heinze ◽  
J. C. Zill ◽  
J. Matysik ◽  
W. D. Einicke ◽  
R. Gläser ◽  
...  

The strength of interaction at the mesoporous silica–ionic liquid interface and the pore geometry affect the materials' morphology and the physico-chemical properties of the ionic liquids.


Sign in / Sign up

Export Citation Format

Share Document