scholarly journals Wastewater Treatment and Online Chemical Oxygen Demand Estimation in a Cascade of Microbial Fuel Cells

2017 ◽  
Vol 56 (44) ◽  
pp. 12471-12478 ◽  
Author(s):  
Didac Recio-Garrido ◽  
Ademola Adekunle ◽  
Michel Perrier ◽  
Vijaya Raghavan ◽  
Boris Tartakovsky
2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2006 ◽  
Vol 54 (8) ◽  
pp. 9-15 ◽  
Author(s):  
P. Aelterman ◽  
K. Rabaey ◽  
P. Clauwaert ◽  
W. Verstraete

Microbial fuel cells (MFCs) are emerging as promising technology for the treatment of wastewaters. The potential energy conversion efficiencies are examined. The rates of energy recovery (W/m3 reactor) are reviewed and evaluated. Some recent data relating to potato-processing wastewaters and a hospital wastewater effluent are reported. Finally, a set of process configurations in which MFCs could be useful to treat wastewaters is schematized. Overall, the MFC technology still faces major challenges, particularly in terms of chemical oxygen demand (COD) removal efficiency.


2009 ◽  
Vol 75 (11) ◽  
pp. 3389-3395 ◽  
Author(s):  
Yifeng Zhang ◽  
Booki Min ◽  
Liping Huang ◽  
Irini Angelidaki

ABSTRACT Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity-producing microbial communities developed in two-chamber microbial fuel cells (MFCs) were investigated. The power density reached 123 mW/m2 with an initial hydrolysate concentration of 1,000 mg chemical oxygen demand (COD)/liter, while coulombic efficiencies ranged from 37.1 to 15.5%, corresponding to the initial hydrolysate concentrations of 250 to 2,000 mg COD/liter. The suspended bacteria found were different from the bacteria immobilized in the biofilm, and they played different roles in electricity generation from the hydrolysate. The bacteria in the biofilm were consortia with sequences similar to those of Bacteroidetes (40% of sequences), Alphaproteobacteria (20%), Bacillus (20%), Deltaproteobacteria (10%), and Gammaproteobacteria (10%), while the suspended consortia were predominately Bacillus (22.2%). The results of this study can contribute to improving understanding of and optimizing electricity generation in microbial fuel cells.


Author(s):  
G. Shyamala ◽  
N. Saravanakumar ◽  
E. Vamsi Krishna

Microbial fuel cells (MFCs) set a new trend of converting chemical energy or bio energy to electricity from wastewater (domestic and industries) at the same time removal of chemical oxygen demand (COD) from the wastewater. Electrical energy generated from microbial fuel cell could be used for small electrical device example biosensors. The main components of MFCs are the anode, and the cathode salt bridge. It contains an anode chamber and a cathode chamber which separate electrodes for the production of electricity, using wastewater in an anaerobic chamber helps grow native microorganisms. Adding substrates increases productivity of the electrons that are moving from the anode chamber to the cathode chamber by help of the salt bridge. Bioreactors based on power generation in MFCs are a new approach to wastewater treatment. Power generation and current is modulated in this system. If it is optimised, MFCs would prove to be new method to offset wastewater treatment plant operating costs.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4735
Author(s):  
Szymon Potrykus ◽  
Sara Mateo ◽  
Janusz Nieznański ◽  
Francisco Jesús Fernández-Morales

The energy contained in wastewaters has been identified as a promising sustainable energy resource that could be harvested by using microbial fuel cells (MFC). When dealing with real wastewaters, the MFCs should be able to manage high flow rates and flow rates fluctuations. In this work, the short-term effects of the influent flow rate variations on the performance of a microbial fuel cell has been studied. With this aim, the influent flow rate was stepwise increased from 0.72 to 7.2 L/d and then stepwise decreased. The obtained results indicate that, on the one hand, an increase in the influent flow rate leads to higher chemical oxygen demand removal rates up to 396 g/(L/d) and higher electric power generation almost 18 mW/m2, but to lower coulombic efficiencies. On the other hand, the reduction of the flow rate increases the coulombic efficiencies, as well as the percentage of chemical oxygen demand removed, but decreases electric power generation. In the short-term, the exposition to higher influent flow rates causes the growth of the microbial population of the MFC, the growth of the non-electrogenic microorganisms being higher than that of the electrogenic ones. The higher growth of non-electrogenic microorganisms may lead to lower coulombic efficiencies.


2013 ◽  
Vol 864-867 ◽  
pp. 1839-1842
Author(s):  
Xiao Qin Zhao ◽  
Xiao Jie Sun ◽  
Su Na Wei ◽  
Jiang Cheng Liang ◽  
Yang Yang ◽  
...  

Based on the previous studies, this experiment presented a new kind of microbial fuel cells (MFC), single-chamber air cathode microbial fuel cells without proton membrane. After investigating the contrast of substrate changes in microbial fuel cells and simple anaerobic digestion, the analysis results of soluble chemical oxygen demand (SCOD), TP, TN and NH3-N show that: SCOD increase firstly, then decrease, to the end, descend. As a result, we find that SCOD in MFC is lower than that in control device (CD). Throughout the whole reaction period, TP in MFC is lower than that in CD. TN and NH3-N show upward trend after a reaction period.


2021 ◽  
Vol 775 ◽  
pp. 145904
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Evy Widyaningsih ◽  
Sunah Kim ◽  
Younggy Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document