Synthesis and Structure of Water-Soluble Sb Quantum Dots and Enhanced Corrosion Inhibition Performance and Mechanisms

Author(s):  
Renhui Zhang ◽  
Liping Xiong ◽  
Zhongyi He ◽  
Jibin Pu ◽  
Lei Guo
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
R. Geethanjali ◽  
A. Ali Fathima Sabirneeza ◽  
S. Subhashini

Pectin-g-polyacrylamide (denoted as Pec-g-PAAm) and pectin-g-polyacrylic acid (denoted as Pec-g-PAA) were synthesized using pectin, acrylamide, and acrylic acid as starting materials. The grafted polymers were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyser (TGA), and scanning electron microscopy (SEM). The corrosion inhibition behaviour of the grafted polymers on mild steel in 3.5% NaCl was evaluated electrochemically through Tafel polarization and impedance studies. The corrosion inhibition performance of both the polymers was found to be around 85%.


2017 ◽  
Vol 749 ◽  
pp. 65-69
Author(s):  
Kenji Yamaguchi ◽  
Kazuo Ogawa ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
...  

Cutting fluid is commonly used during metal cutting process for cooling and lubrication. Fluid types are generally classified into mineral or fatty oils and water miscible oils. In Japan, the former is called water-insoluble coolants, and the latter is called water-soluble coolants. Water-insoluble coolants are specified as dangerous material by the Japanese law due to its flammability. Therefore, the water-insoluble coolants are not appropriate for unmanned operation of machine tools. Therefore, the usage rate of water-soluble coolants is increasing. Water soluble coolants are diluted with a water by several ten times. The waste management of the water-soluble coolant become important for environment-conscious green manufacturing. We have been developing a recycling system for water-soluble coolants. In the recycle system, water is extracted from the waste coolant and the water is then reutilized as a diluent of a new coolant. We have developed various types of chemical or bio-chemical water recovery methods for recycling systems. We found a commercially available amine-free water-soluble coolant is suitable for the recycling system. The processing time, processing cost, and the biochemical and chemical oxygen demand of the extracted water are improved by the amine-free water soluble coolant compared with a conventional amine-containing coolant. However, its corrosion inhibition performance was poor in general machining applications. Our cooperative company developed a prototype of a corrosion-inhibition-improved amine-free water-soluble cutting coolant. The prototype coolant showed a good stability and cooling and lubricating performances, and its recyclability was as good as that of conventional amine-free coolants. In this study, we focused on repeated recycling of the prototype coolant. We repeatedly applied the water recycling process to the recycled coolant. The recyclability of the prototype coolant was not affected by repeated recycling; however, process residues increased with the number of recycles, and a deterioration was noticed in the corrosion-inhibition performance of the coolant diluted with recycled water.


2016 ◽  
Vol 1136 ◽  
pp. 104-109 ◽  
Author(s):  
Kenji Yamaguchi ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
Subaru Tsukano ◽  
...  

The concern for environmental problems has been increasing rapidly in recent years. Water-soluble coolants are widely used in machining processes. To reduce management costs and the environmental load of water-soluble coolants, the authors studied a recycling system for water-soluble coolants. With this recycling system, water is extracted from a waste coolant by chemical or biochemical treatment; the recovered water is re-utilized as a diluent for a new coolant. Coolant recyclability depends on the coolant type. Most water-soluble coolants contain alkanolamines for corrosion inhibition and maintenance of putrefaction prevention. However, alkanolamines are difficult to eliminate from water-soluble coolants by chemical and physical waste treatment processes. Some amine-free, water-soluble coolants have been developed and are commercially available. The reduction of environmental load in the treatment of waste coolants is anticipated for amine-free coolants. We applied the recycling process to a commercially available amine-free, water-soluble coolant. The amine-free coolant showed good recyclability and lubricating performance. However, the corrosion inhibition performance of the coolant was inadequate for use in general machining. Recently, our cooperative company developed a prototype amine-free, water-soluble coolant with improved corrosion inhibition. In this study, we experimentally examined the recyclability and performance stability of this newly developed coolant. The experimental results showed that the new amine-free coolant has good corrosion inhibition equivalent to conventional amine-containing coolants. In addition, the recyclability, stability, and cooling and lubricating performance of the coolant are equal to conventional amine-free coolants. The amine-free, water-soluble coolant with improved corrosion inhibition has the advantage that it can be used in the recycling system for water-soluble coolants.


2019 ◽  
Vol 92 (6) ◽  
pp. 848-856
Author(s):  
Jie Lv ◽  
Luoping Fu ◽  
Bo Zeng ◽  
Mingjin Tang ◽  
Jianbo Li

2013 ◽  
Vol 40 (6) ◽  
pp. 857-861
Author(s):  
Bin ZHAO ◽  
Su-Qing ZHAO ◽  
Li-Hua ZHOU ◽  
Kun ZHANG ◽  
Jun ZHANG
Keyword(s):  

2012 ◽  
Vol 8 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Sonia Bailon-Ruiz ◽  
Luis Alamo-Nole ◽  
Oscar Perales-Perez

Sign in / Sign up

Export Citation Format

Share Document