New Class of Half-Sandwich Ruthenium(II) Arene Complexes Bearing the Water-Soluble CAP Ligand as an in Vitro Anticancer Agent

2017 ◽  
Vol 56 (10) ◽  
pp. 5514-5518 ◽  
Author(s):  
Antonella Guerriero ◽  
Werner Oberhauser ◽  
Tina Riedel ◽  
Maurizio Peruzzini ◽  
Paul J. Dyson ◽  
...  
2011 ◽  
Vol 687 ◽  
pp. 539-547 ◽  
Author(s):  
Hui Wang ◽  
Hao Liang ◽  
Qi Peng Yuan ◽  
Tian Xin Wang

Sulforaphane (SF) has been proved to be an effective anticancer agent according to its experiments bothin vitroandin vivo. To date, there is few reported method to deliver SF for increasing its bioactivity and stability. In this study, a novel pH-sensitive microsphere composed of water-soluble carboxymethylated chitosan (CMCS) and alginate mixed with sodium sulfate was developed for SF delivery. Swelling studies and release characteristics under different pH values of microspheres were investigated. Then, the release of SF from test microspheres was studied in simulated gastric and segmented intestinal media. It has been found that the SF cumulated release in 5h was increased from 55.89% to 76.73% when the microspheres mixed with sodium sulfate. In addition, the stability of SF embedded in CMCS/alginate microspheres was also significantly improved. Under pH 7.4, free SF had a severe degradation of approximate 100% within 210 min, whereas the change of the SF in microspheres was only a decrease of about 10%. The results suggested that the microspheres of CMCS and alginate could be a suitable pH-sensitive carrier to increase the stability of SF in the segmented intestine.


2013 ◽  
Vol 2013 (24) ◽  
pp. 4318-4328 ◽  
Author(s):  
Leah C. Matsinha ◽  
Peter Malatji ◽  
Alan T. Hutton ◽  
Gerhard A. Venter ◽  
Selwyn F. Mapolie ◽  
...  

1994 ◽  
Vol 5 (6) ◽  
pp. 387-394 ◽  
Author(s):  
H. Schott ◽  
M. P. Häussler ◽  
P. Gowland ◽  
D. H. Horber ◽  
R. A. Schwendener

N4-hexadecyl-5′-0-(4-monomethoxytrityl)-2′-deoxycytidine-3′-hydrogenphosphate was reacted with 3′-azido-2′,3′-dideoxythymidine (AZT) according to the hydrogenphosphate method to yield N4-hexadecyl-2′-deoxycytidylyl-(3′-5)-3′-azido-2′,3′-dideoxythymidine. N4-palmitoyl-5′-O-(4-monomethoxytrityl)-2′-deoxycytidine-3′-(2-chlorophenyl)-phosphate was condensed to AZT using the triester method to give N4-palmitoyl-2′-deoxycytidylyl-(3′-5′)-3,-azido-2′,3′-dideoxythymidine. Both dinucleosidephosphates have amphiphilic properties and represent a new class of AZT derivatives in which the polar AZT-5′-monophosphate is masked with lipophilic deoxycytidine residues of variable stability. The AZT derivatives are water soluble, by forming micelles, and as a result of their amphiphilic nature, they can be incorporated into the lipid membranes of liposomes. In contrast to the micellar drug preparations, the liposomal formulations were shown to exert no lytic activity on human erythrocytes. Both AZT derivatives have anti HIV-1 activity in vitro.


2018 ◽  
Vol 278 ◽  
pp. 142-155 ◽  
Author(s):  
Elshaimaa Sayed ◽  
Christina Karavasili ◽  
Ketan Ruparelia ◽  
Rita Haj-Ahmad ◽  
Georgia Charalambopoulou ◽  
...  

2004 ◽  
Vol 48 (10) ◽  
pp. 3697-3701 ◽  
Author(s):  
Michael J. Pucci ◽  
Joanne J. Bronson ◽  
John F. Barrett ◽  
Kenneth L. DenBleyker ◽  
Linda F. Discotto ◽  
...  

ABSTRACT Nocathiacins are cyclic thiazolyl peptides with inhibitory activity against gram-positive bacteria. BMS-249524 (nocathiacin I), identified from screening a library of compounds against a multiply antibiotic-resistant Enterococcus faecium strain, was used as a lead chemotype to obtain additional structurally related compounds. The MIC assay results of BMS-249524 and two more water-soluble derivatives, BMS-411886 and BMS-461996, revealed potent in vitro activities against a variety of gram-positive pathogens including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin intermediate-resistant S. aureus, vancomycin-resistant enterococci, Mycobacterium tuberculosis and Mycobacterium avium. Analysis of killing kinetics revealed that these compounds are bactericidal for S. aureus with at least a 3-log10 reduction of bacterial growth within 6 h of exposure to four times the MICs. Nocathiacin-resistant mutants were characterized by DNA sequence analyses. The mutations mapped to the rplK gene encoding the L11 ribosomal protein in the 50S subunit in a region previously shown to be involved in the binding of related thiazolyl peptide antibiotics. These compounds demonstrated potential for further development as a new class of antibacterial agents with activity against key antibiotic-resistant gram-positive bacterial pathogens.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Lê Thanh Long ◽  
Nguyễn Văn Toản ◽  
Nguyễn Văn Huế ◽  
Trang Sĩ Trung ◽  
Vũ Ngọc Bội

Chủng D1 phân lập từ các mẫu chuối có vết bệnh thán thư điển hình được sử dụng để nghiên cứu khả năng kháng nấm của chitosan hoà tan trong nước (Water-soluble chitosan_WSC) ở điều kiện in vitro. Kết quả phân tích trình tự gen mã hoá 28S rRNA của chủng D1 cho thấy tương đồng trình tự cao với các trình tự tương ứng của loài Colletotrichum musae và được ký hiệu là Colletotrichum musae D1. Kết quả các thí nghiệm đều cho thấy C. musae D1 rất nhạy cảm với WSC, hiệu lực ức chế tăng khi tăng nồng độ WSC xử lý ở điều kiện in vitro. Trên môi trường PDA, nồng độ 1,6% WSC ức chế hoàn toàn sự sinh trưởng của sợi nấm C. musae D1, nồng độ ức chế 50% (PIRG50) và nồng độ ức chế tối thiểu 90% (MIC90) tương ứng với nồng độ WSC 0,28% và 0,88%. Trong môi trường PDB, giá trị IC50 và MIC90 tương ứng là 0,11% và 0,43% và sự phát triển của sợi nấm C. musae D1 bị ức chế hoàn toàn ở nồng độ 0,8%. WSC không chỉ ức chế sự nảy mầm mà còn gây biến đổi bất thường bào tử nấm khi quan sát trên kính hiển vi.


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Sign in / Sign up

Export Citation Format

Share Document