Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and TRI Gene Transcript Levels in Fusarium graminearum

2021 ◽  
Vol 69 (5) ◽  
pp. 1684-1692
Author(s):  
Chaofeng Li ◽  
Shuai Fan ◽  
Yan Wen ◽  
Zhenchao Tan ◽  
Chenglan Liu
2013 ◽  
Vol 110 (12) ◽  
pp. 2222-2233 ◽  
Author(s):  
Monica Sanden ◽  
Robin Ornsrud ◽  
Nini H. Sissener ◽  
Susanne Jorgensen ◽  
Jinni Gu ◽  
...  

In the present study, zebrafish (Danio rerio) were fed casein/gelatin-based diets containing either 19 % Bt (Bacillus thuringiensis)-maize or its parental non-Bt (nBt)-maize control for two generations (F0: sixty fish; F1: forty-two to seventy fish per treatment). The study focused on growth and reproductive performance, liver CuZn superoxide dismutase (SOD) enzyme activity, gene transcript levels targeting important cellular pathways in the liver and mid-intestine, histomorphological evaluation of the intestine, differential leucocyte counts, offspring larva swimming activity and global DNA methylation in offspring embryos. No significant effects were observed in the parental generation. The offspring were either fed the same diets as those fed to their parents (Bt–Bt or nBt–nBt) or switched from the Bt diet to the nBt diet (Bt–nBt). The Bt–Bt offspring exhibited a significantly higher body mass increase, specific growth rate and feed utilisation than fish fed the nBt–nBt diet and/or fish fed the Bt–nBt diet. Liver and mid-intestinal gene transcript levels of CuZn SOD were significantly higher in fish fed the nBt–nBt diet than in those fed the Bt–Bt diet. Liver gene transcript levels of caspase 6 were significantly lower for the nBt–nBt group than for the Bt–Bt group. Overall, enhanced growth performance was observed in fish fed the Bt diet for two generations than in those fed the nBt diet for one and two generations. Effects observed on gene biomarkers for oxidative stress and the cell cycle (apoptosis) may be related to the contamination of nBt-maize with fumonisin B1 and aflatoxin B1. In conclusion, it is suggested that Bt-maize is as safe and nutritious as its nBt control when fed to zebrafish for two generations.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Mark E Pepin ◽  
David K Crossman ◽  
Joseph P Barchue ◽  
Salpy V Pamboukian ◽  
Steven M Pogwizd ◽  
...  

To identify the role of glucose in the development of diabetic cardiomyopathy, we had directly assessed glucose delivery to the intact heart on alterations of DNA methylation and gene expression using both an inducible heart-specific transgene (glucose transporter 4; mG4H) and streptozotocin-induced diabetes (STZ) mouse models. We aimed to determine whether long-lasting diabetic complications arise from prior transient exposure to hyperglycemia via a process termed “glycemic memory.” We had identified DNA methylation changes associated with significant gene expression regulation. Comparing our results from STZ, mG4H, and the modifications which persist following transgene silencing, we now provide evidence for cardiac DNA methylation as a persistent epigenetic mark contributing to glycemic memory. To begin to determine which changes contribute to human heart failure, we measured both RNA transcript levels and whole-genome DNA methylation in heart failure biopsy samples (n = 12) from male patients collected at left ventricular assist device placement using RNA-sequencing and Methylation450 assay, respectively. We hypothesized that epigenetic changes such as DNA methylation distinguish between heart failure etiologies. Our findings demonstrated that type 2 diabetic heart failure patients (n = 6) had an overall signature of hypomethylation, whereas patients listed as ischemic (n = 5) had a distinct hypermethylation signature for regulated transcripts. The focus of this initial analysis was on promoter-associated CpG islands with inverse changes in gene transcript levels, from which diabetes (14 genes; e.g. IGFBP4) and ischemic (12 genes; e.g. PFKFB3) specific targets emerged with significant regulation of both measures. By combining our mouse and human molecular analyses, we provide evidence that diabetes mellitus governs direct regulation of cellular function by DNA methylation and the corresponding gene expression in diabetic mouse and human hearts. Importantly, many of the changes seen in either mouse type 1 diabetes or human type 2 diabetes were similar supporting a consistent mechanism of regulation. These studies are some of the first steps at defining mechanisms of epigenetic regulation in diabetic cardiomyopathy.


2008 ◽  
Vol 75 (5) ◽  
pp. 1229-1235 ◽  
Author(s):  
Iman A. El Gheriany ◽  
Daniela Bocioaga ◽  
Anthony G. Hay ◽  
William C. Ghiorse ◽  
Michael L. Shuler ◽  
...  

ABSTRACT A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 μM iron/5.8 mM pyruvate) and sufficient iron (0.2 μM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron.


2019 ◽  
Vol 366 (7) ◽  
Author(s):  
Andrew S Urquhart ◽  
Alexander Idnurm

ABSTRACT Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229064
Author(s):  
Jesus M. Eraso ◽  
Priyanka Kachroo ◽  
Randall J. Olsen ◽  
Stephen B. Beres ◽  
Luchang Zhu ◽  
...  

2009 ◽  
Vol 22 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Benjamin P. Millett ◽  
Dimitre S. Mollov ◽  
Massimo Iorizzo ◽  
Domenico Carputo ◽  
James M. Bradeen

Foliar late blight is one of the most important diseases of potato. Foliar blight resistance has been shown to change as a plant ages. In other pathosystems, resistance (R) gene transcript levels appear to be correlated to disease resistance. The cloning of the broad-spectrum, foliar blight resistance gene RB provided the opportunity to explore how foliar blight resistance and R-gene transcript levels vary with plant age. Plants of Solanum bulbocastanum PT29, from which RB, including the native promoter and other flanking regions, was cloned, and S. tuberosum cv. Dark Red Norland (nontransformed and RB-transformed) representing three different developmental stages were screened for resistance to late blight and RB transcript levels. Preflowering plants of all genotypes exhibited the highest levels of resistance, followed by postflowering and near-senescing plants. The RB transgene significantly affected resistance, enhancing resistance levels of all RB-containing lines, especially in younger plants. RB transgene transcripts were detected at all plant ages, despite weak correlation with disease resistance. Consistent transcript levels in plants of different physiological ages with variable levels of disease resistance demonstrate that changes in disease-resistance phenotypes associated with plant age cannot be attributed to changes in R-gene transcript abundance.


Sign in / Sign up

Export Citation Format

Share Document