scholarly journals Probing Interplays between Human XBP1u Translational Arrest Peptide and 80S Ribosome

Author(s):  
Francesco Di Palma ◽  
Sergio Decherchi ◽  
Fátima Pardo-Avila ◽  
Sauro Succi ◽  
Michael Levitt ◽  
...  
2021 ◽  
Author(s):  
Francesco Di Palma ◽  
Sergio Decherchi ◽  
Fátima Pardo-Avila ◽  
Sauro Succi ◽  
Michael Levitt ◽  
...  

The ribosome stalling mechanism is a crucial biological process; yet its atomistic underpinning is still elusive. In this framework, the XBP1u translational arrest peptide (AP) plays a central role in regulating the Unfolded Protein Response (UPR) in eukaryotic cells. Here, we report multi-microseconds all atom molecular dynamics simulations designed to probe the interactions between the XBP1u AP and the mammalian ribosome exit tunnel, both for the wildtype AP and for four mutant variants of different arrest potency. Enhanced sampling simulations allow investigating the AP release process of the different variants shedding light on this complex mechanism. The present outcomes are in qualitative/quantitative agreement with available experimental data. In conclusion, we provide an unprecedented atomistic picture of this biological process and clear-cut insights into the key AP-ribosome interactions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6973
Author(s):  
Alberto Mills ◽  
Federico Gago

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bertrand Beckert ◽  
Elodie C. Leroy ◽  
Shanmugapriya Sothiselvam ◽  
Lars V. Bock ◽  
Maxim S. Svetlov ◽  
...  

AbstractMacrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


2021 ◽  
Author(s):  
Manon MS Richard ◽  
Marijn Knip ◽  
Joëlle Schachtschabel ◽  
Machiel S Beijaert ◽  
Frank LW Takken

1994 ◽  
Vol 14 (11) ◽  
pp. 7352-7362 ◽  
Author(s):  
E Cano ◽  
C A Hazzalin ◽  
L C Mahadevan

Independent of its ability to block translation, anisomycin intrinsically initiates intracellular signals and immediate-early gene induction [L. C. Mahadevan and D. R. Edwards, Nature (London) 349:747-749, 1991]. Here, we characterize further its action as a potent, selective signalling agonist. In-gel kinase assays show that epidermal growth factor (EGF) transiently activates five kinases: the mitogen-activated protein (MAP) kinases ERK-1 and -2, and three others, p45, p55, and p80. Anisomycin, at inhibitory and subinhibitory concentrations, does not activate ERK-1 and -2 but elicits strong sustained activation of p45 and p55, which are unique in being serine kinases whose detection is enhanced with poly-Glu/Tyr or poly-Glu/Phe copolymerized in these gels. Translational arrest using emetine or puromycin does not activate p45 and p55 but does prolong EGF-stimulated ERK-1 and -2 activation. Rapamycin, which blocks anisomycin-stimulated p70/85S6k activation without affecting nuclear responses, has no effect on p45 or p55 kinase. p45 and p55 are activable by okadaic acid or UV irradiation, and both kinases phosphorylate the c-Jun NH2-terminal peptide 1-79, putatively placing them within c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) subfamily of MAP kinases. Thus, the EGF- and anisomycin-activated kinases p45 and p55 are strongly implicated in signalling to c-fos and c-jun, whereas the MAP kinases ERK-1 and -2 are not essential for this process.


1994 ◽  
Vol 14 (11) ◽  
pp. 7352-7362 ◽  
Author(s):  
E Cano ◽  
C A Hazzalin ◽  
L C Mahadevan

Independent of its ability to block translation, anisomycin intrinsically initiates intracellular signals and immediate-early gene induction [L. C. Mahadevan and D. R. Edwards, Nature (London) 349:747-749, 1991]. Here, we characterize further its action as a potent, selective signalling agonist. In-gel kinase assays show that epidermal growth factor (EGF) transiently activates five kinases: the mitogen-activated protein (MAP) kinases ERK-1 and -2, and three others, p45, p55, and p80. Anisomycin, at inhibitory and subinhibitory concentrations, does not activate ERK-1 and -2 but elicits strong sustained activation of p45 and p55, which are unique in being serine kinases whose detection is enhanced with poly-Glu/Tyr or poly-Glu/Phe copolymerized in these gels. Translational arrest using emetine or puromycin does not activate p45 and p55 but does prolong EGF-stimulated ERK-1 and -2 activation. Rapamycin, which blocks anisomycin-stimulated p70/85S6k activation without affecting nuclear responses, has no effect on p45 or p55 kinase. p45 and p55 are activable by okadaic acid or UV irradiation, and both kinases phosphorylate the c-Jun NH2-terminal peptide 1-79, putatively placing them within c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) subfamily of MAP kinases. Thus, the EGF- and anisomycin-activated kinases p45 and p55 are strongly implicated in signalling to c-fos and c-jun, whereas the MAP kinases ERK-1 and -2 are not essential for this process.


2007 ◽  
Vol 82 (6) ◽  
pp. 2620-2630 ◽  
Author(s):  
Mulu Z. Tesfay ◽  
Jun Yin ◽  
Christina L. Gardner ◽  
Mikhail V. Khoretonenko ◽  
Nadejda L. Korneeva ◽  
...  

ABSTRACT The alpha/beta interferon (IFN-α/β) response is critical for host protection against disseminated replication of many viruses, primarily due to the transcriptional upregulation of genes encoding antiviral proteins. Previously, we determined that infection of mice with Sindbis virus (SB) could be converted from asymptomatic to rapidly fatal by elimination of this response (K. D. Ryman et al., J. Virol. 74:3366-3378, 2000). Probing of the specific antiviral proteins important for IFN-mediated control of virus replication indicated that the double-stranded RNA-dependent protein kinase, PKR, exerted some early antiviral effects prior to IFN-α/β signaling; however, the ability of IFN-α/β to inhibit SB and protect mice from clinical disease was essentially undiminished in the absence of PKR, RNase L, and Mx proteins (K. D. Ryman et al., Viral Immunol. 15:53-76, 2002). One characteristic of the PKR/RNase L/Mx-independent antiviral effect was a blockage of viral protein accumulation early after infection (K. D. Ryman et al., J. Virol. 79:1487-1499, 2005). We show here that IFN-α/β priming induces a PKR-independent activity that inhibits m7G cap-dependent translation at a step after association of cap-binding factors and the small ribosome subunit but before formation of the 80S ribosome. Furthermore, the activity targets mRNAs that enter across the cytoplasmic membrane, but nucleus-transcribed RNAs are relatively unaffected. Therefore, this IFN-α/β-induced antiviral activity represents a mechanism through which IFN-α/β-exposed cells are defended against viruses that enter the cytoplasm, while preserving essential host activities, including the expression of antiviral and stress-responsive genes.


iScience ◽  
2019 ◽  
Vol 20 ◽  
pp. 466-480 ◽  
Author(s):  
Marisa Sanchez ◽  
Yingying Lin ◽  
Chih-Cheng Yang ◽  
Philip McQuary ◽  
Alexandre Rosa Campos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document