Bonding and Magnetic Exchange Pathways in Nature’s Water-Oxidizing Complex

Author(s):  
Thomas A. Corry ◽  
Felix Rummel ◽  
Patrick J. O’Malley
Polyhedron ◽  
2021 ◽  
Vol 199 ◽  
pp. 115088
Author(s):  
Azadeh Mehrani ◽  
Maurice G. Sorolla ◽  
Tatyana Makarenko ◽  
Allan J. Jacobson

Author(s):  
Chuyang Liu ◽  
Tao Jiang ◽  
Tian Gao ◽  
Guangxian Xia ◽  
Yufan Cao ◽  
...  

It is well known that both hard/soft magnetic exchange-coupling and ferroelectric-ferromagnetic coupling could facilitate the microwave absorption behavior. Herein, we propose the BaZrxFe12-xO19/Fe3O4/BaZrO3 composites to integrate the advantages of the...


2001 ◽  
Vol 226-230 ◽  
pp. 1782-1784 ◽  
Author(s):  
B. Kalska ◽  
L. Häggström ◽  
P. Blomquist ◽  
R. Wäppling
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 307
Author(s):  
Rebecca L. Dally ◽  
Daniel Phelan ◽  
Nicholas Bishop ◽  
Nirmal J. Ghimire ◽  
Jeffrey W. Lynn

Anisotropy and competing exchange interactions have emerged as two central ingredients needed for centrosymmetric materials to exhibit topological spin textures. Fe3Sn2 is thought to have these ingredients as well, as it has recently been discovered to host room temperature skyrmionic bubbles with an accompanying topological Hall effect. We present small-angle inelastic neutron scattering measurements that unambiguously show that Fe3Sn2 is an isotropic ferromagnet below TC≈660 K to at least 480 K—the lower temperature threshold of our experimental configuration. Fe3Sn2 is known to have competing magnetic exchange interactions, correlated electron behavior, weak magnetocrystalline anisotropy, and lattice (spatial) anisotropy; all of these features are thought to play a role in stabilizing skyrmions in centrosymmetric systems. Our results reveal that at the elevated temperatures measured, there is an absence of significant magnetocrystalline anisotropy and that the system behaves as a nearly ideal isotropic exchange interaction ferromagnet, with a spin stiffness D(T=480 K)=168 meV Å2, which extrapolates to a ground state spin stiffness D(T=0 K)=231 meV Å2.


2021 ◽  
Vol 12 (14) ◽  
pp. 5134-5142 ◽  
Author(s):  
Aaron J. Scott ◽  
Julia Vallejo ◽  
Arup Sarkar ◽  
Lucy Smythe ◽  
E. Regincós Martí ◽  
...  

The tetrahedral [NiII4L6]8+ cage can reversibly bind paramagnetic MX41/2− guests, inducing magnetic exchange interactions between host and guest.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
S. Calder ◽  
A. V. Haglund ◽  
A. I. Kolesnikov ◽  
D. Mandrus

Sign in / Sign up

Export Citation Format

Share Document