Development of ZrB2-Based Single Layer Absorber Coating and Molten Salt Corrosion of Bulk ZrB2–SiC Ceramic for Concentrated Solar Power Application

Author(s):  
Ranjith Kumar P ◽  
Mohammed Adnan Hasan ◽  
Arjun Dey ◽  
Bikramjit Basu
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


Author(s):  
Michael W. Usrey ◽  
Yiping Liu ◽  
Mark Anderson ◽  
Jon Lubbers ◽  
Brady Knowles ◽  
...  

Solar power is a sustainable resource which can reduce the power generated by fossil fuels, lowering greenhouse gas emissions and increasing energy independence. The U.S. Department of Energy’s SunShot Initiative has set goals to increase the efficiency of concentrating solar power (CSP) systems. One SunShot effort to help CSP systems exceed 50% efficiency is to make use of high-temperature heat transfer fluids (HTFs) and thermal energy storage (TES) fluids that can increase the temperature of the power cycle up to 1300°C. Sporian has successfully developed high-temperature operable pressure, temperature, thermal flux, strain, and flow sensors for gas path measurements in high-temperature turbine engines. These sensors are based on a combination of polymer derived ceramic (PDC) sensors, advanced high-temperature packaging, and integrated electronics. The overall objective is the beneficial application of these sensors to CSP systems. Through collaboration with CSP industry stakeholders, Sporian has established a full picture of operational, interface, and usage requirements for trough, tower, and dish CSP architectures. In general, sensors should have accurate measurement, good reliability, reasonable cost, and ease of replacement or repair. Sensors in contact with hot salt HTF and TES fluids will experience temperature cycling on a daily basis, and parts of the system may be drained routinely. Some of the major challenges to high-temperature CSP implementation include molten salt corrosion and flow erosion of the sensors. Potential high-temperature sensor types that have been identified as of interest for CSP HTF/TES applications include temperature, pressure, flow, and level sensors. Candidate solar salts include nitrate, carbonate, and chloride, with different application temperatures ranging from 550°C-900°C. Functional ceramics were soaked for 500 hours in molten nitrate, carbonate, and chloride salts, showing excellent corrosion resistance in chloride salts and good resistance in nitrate salts. The demonstration of functional ceramics in relevant HTFs laid the foundation for full prototype sensor and packaging demonstration. Sporian has developed a packaging approach for ceramic-based sensors in various harsh gaseous environments at temperatures up to 1400°C, but several aspects of that packaging are not compatible with corrosive and electrically conductive HTFs. In addition to consulting published literature, a 300 hour soak test in molten chloride salt allowed the authors to identify suitable structural metals and ceramics. Based on discussions with stakeholders, molten salt corrosion testing and room-temperature water flow testing, suitable for CSP sensor/packaging concepts were identified for future development, and initial prototypes have been built and tested.


Solar Energy ◽  
2011 ◽  
Vol 85 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
Vincenzo Piemonte ◽  
Marcello De Falco ◽  
Pietro Tarquini ◽  
Alberto Giaconia

2015 ◽  
Vol 2 ◽  
pp. 3-13
Author(s):  
Christopher Hickin ◽  
Henry Li ◽  
Sharnan Kemp

In the development of renewable energy sources, there has been a trend toward increasing and stabilising the power output of Concentrated Solar Power Plants (CSPPs) during times of reduced solar resource through the use of Thermal Energy Storage Devices (TESDs). This study investigates whether the use of a molten salt TESD decreases the efficiency of a parabolic trough CSPP due to additional system energy losses despite prolonging the operational time of the CSPP. A theoretical analysis of a simplified CSPP was made to determine if a TESD would impact the efficiency of the CSPP. This was followed up by a survey of currently active parabolic trough CSPPs both with and without molten salt TESDs. The theoretical analysis illustrated that a TESD would have no effect on the efficiency of a CSPP. However, the survey revealed that the use of a TESD improved the efficiency of a CSPP. The results of the study don't support the theoretical analysis or the hypothesis suggesting that a property has been overlooked. This property is most likely to be that generators tend to operate best within a certain temperature range, and in a CSPP the optimum temperature range cannot be maintained. This results in a generator being selected capable of operating for the longest period with the lowest amount of excess solar energy. When a TESD is implemented, the excess solar energy is stored for later use, prolonging the generator's running time and increasing the useable energy. The realisation of the ability of a TESD to increase the efficiency of a CSPP as well as extending its operating time shows a promising area of development in CSPP technology and increasing its application in electricity generation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2266
Author(s):  
Binjian Ma ◽  
Donghyun Shin ◽  
Debjyoti Banerjee

Molten salts mixed with nanoparticles have been shown as a promising candidate as the thermal energy storage (TES) material in concentrated solar power (CSP) plants. However, the conventional method used to prepare molten salt nanofluid suffers from a high material cost, intensive energy use, and laborious process. In this study, solar salt-Al2O3 nanofluids at three different concentrations are prepared by a one-step method in which the oxide nanoparticles are generated in the salt melt directly from precursors. The morphologies of the obtained nanomaterials are examined under scanning electron microscopy and the specific heat capacities are measured using the temperature history (T-history) method. A non-linear enhancement in the specific heat capacity of molten salt nanofluid is observed from the thermal characterization at a nanoparticle mass concentration of 0.5%, 1.0%, and 1.5%. In particular, a maximum enhancement of 38.7% in specific heat is found for the nanofluid sample prepared with a target nanoparticle mass fraction of 1.0%. Such an enhancement trend is attributed to the formation of secondary nanostructure between the alumina nanoparticles in the molten salt matrix following a locally-dispersed-parcel pattern. These findings provide new insights to understanding the enhanced energy storage capacity of molten salt nanofluids.


Sign in / Sign up

Export Citation Format

Share Document