Accelerating Self-Healing Driven by Surface Energy Using Bulky Ester Groups in Polymer Materials

Author(s):  
Shanjun Ding ◽  
Zhu Wang ◽  
Guocui Zhu ◽  
Ximing Zhang ◽  
Jun Zhang ◽  
...  
2021 ◽  
Author(s):  
Prantik Mondal ◽  
Gourhari Jana ◽  
Tuhin Subhra Pal ◽  
Pratim K. Chattaraj ◽  
Nikhil K Singha

Nowadays, the design of functional polymer materials that can mimic natural phenomena, e.g., self-healing of skin cuts, has got a tremendous interest in materials science and engineering. Recently, 1,2,4-triazoline-3,5-dione (TAD)...


Author(s):  
Aftab Aslam Parwaz Khan ◽  
Anish Khan ◽  
Omaish Ansari ◽  
Mohamed Shaban ◽  
Malik Abdul Rub ◽  
...  

2019 ◽  
Vol 10 (16) ◽  
pp. 1993-1997 ◽  
Author(s):  
Sanjib Banerjee ◽  
Bhausaheb V. Tawade ◽  
Bruno Améduri

Effective use of Diels–Alder chemistry led to the development of thermally amendable and self-healing polymeric materials based on a copolymer of cyclopenta-1,3-dien-1-ylmethyl 2-(trifluoromethyl)acrylate (MAF-Furan) and 2,2,2-trifluoroethyl α-fluoroacrylate (FATRIFE).


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 989 ◽  
Author(s):  
Liangdong Zhang ◽  
Teng Qiu ◽  
Xiting Sun ◽  
Longhai Guo ◽  
Lifan He ◽  
...  

Inspired by the growing demand for smart and environmentally friendly polymer materials, we employed 2,2′-disulfanediyldianiline (22DTDA) as a chain extender to synthesize a waterborne polyurethane (WPUR). Due to the ortho-substituted structure of the aromatic disulfide, the urea moieties formed a unique microphase structure in the WPUR, its mechanical strength was enhanced more 180 times relative to that of the material prepared without 22DTDA, and excellent self-healing abilities at body temperature in air or under ultrasound in water were obtained. If the self-healing process was carried out at 37 °C, 50 °C or under ultrasound, the ultimate tensile strength and elongation at break of the healed film could reach 13.8 MPa and 1150%, 15.4 MPa and 1215%, or 16 MPa and 1056%, respectively. Moreover, the WPUR films could be re-healed at the same fracture location over three cutting–healing cycles, and the recovery rates of the tensile strength and elongation at break remained almost constant throughout these cycles.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 862 ◽  
Author(s):  
Daniel Garcia-Garcia ◽  
José Enrique Crespo-Amorós ◽  
Francisco Parres ◽  
María Dolores Samper

The effect of ultraviolet radiation on styrene-ethylene-butadiene-styrene (SEBS) has been studied at different exposures times in order to obtain a better understanding of the mechanism of ageing. The polymer materials were mechanically tested and then their surfaces were analyzed using a scanning electron microscope (SEM) and atomic force microscopy (AFM). Moreover, the optical analysis of contact angle (OCA) was used to evaluate the surface energy (γs) and the yellowing index (YI) and attenuated total reflectance infrared spectroscopy (ATR–FTIR) were used to observe structural and physical changes in aging SEBS. The results obtained for the SEBS, in relation to the duration of exposure, showed superficial changes that cause a decrease in the surface energy (γs) and, therefore, a decrease in surface roughness. This led to a reduction in mechanical performance, decreasing the tensile strength by about 50% for exposure times of around 200 h.


Sign in / Sign up

Export Citation Format

Share Document