scholarly journals Achievement of Both Mechanical Properties and Intrinsic Self-Healing under Body Temperature in Polyurethane Elastomers: A Synthesis Strategy from Waterborne Polymers

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 989 ◽  
Author(s):  
Liangdong Zhang ◽  
Teng Qiu ◽  
Xiting Sun ◽  
Longhai Guo ◽  
Lifan He ◽  
...  

Inspired by the growing demand for smart and environmentally friendly polymer materials, we employed 2,2′-disulfanediyldianiline (22DTDA) as a chain extender to synthesize a waterborne polyurethane (WPUR). Due to the ortho-substituted structure of the aromatic disulfide, the urea moieties formed a unique microphase structure in the WPUR, its mechanical strength was enhanced more 180 times relative to that of the material prepared without 22DTDA, and excellent self-healing abilities at body temperature in air or under ultrasound in water were obtained. If the self-healing process was carried out at 37 °C, 50 °C or under ultrasound, the ultimate tensile strength and elongation at break of the healed film could reach 13.8 MPa and 1150%, 15.4 MPa and 1215%, or 16 MPa and 1056%, respectively. Moreover, the WPUR films could be re-healed at the same fracture location over three cutting–healing cycles, and the recovery rates of the tensile strength and elongation at break remained almost constant throughout these cycles.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2936
Author(s):  
Gongbo Ye ◽  
Tao Jiang

A self-healing waterborne polyurethane (WPU) materials containing dynamic disulfide (SS) bond was prepared by introducing SS bond into polymer materials. The zeta potential revealed that all the synthesized WPU emulsions displayed excellent stability, and the particle size of them was about 100 nm. The characteristic peaks of N-H and S-S in urethane were verified by FTIR, and the chemical environment of all elements were confirmed by the XPS test. Furthermore, the tensile strength, self-healing process and self-healing efficiency of the materials were quantitatively evaluated by tensile measurements. The results showed that the self-healing efficiency could reach 96.14% when the sample was heat treated at 70 °C for 4 h. In addition, the material also showed a good reprocessing performance, and the tensile strength of the reprocessed film was 3.39 MPa.


2021 ◽  
Author(s):  
Yuan Yao ◽  
Bo Liu ◽  
Ziyang Xu ◽  
Jianhai Yang ◽  
Wenguang Liu

Self-healing polyurethane elastomers have been extensively studied; however, developing an eco-friendly self-healable waterborne polyurethane (WPU) with exceptional mechanical properties remains a great challenge. Herein, we report healable, and highly tough...


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Joe-Lahai Sormana ◽  
Santanu Chattopadhyay ◽  
J. Carson Meredith

Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constantNH2to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 503
Author(s):  
Dae-Il Lee ◽  
Seung-Hyun Kim ◽  
Dai-Soo Lee

In this study, the self-healing properties of waterborne polyurethane (WPU) were implemented by chitosan as a chain extender of polyurethane prepolymers. The physical properties and self-healing efficiency of WPU were studied by changing the molar fractions of chitosan from 0.1 to 0.3. After thermal treatment for 24 h at 110 °C, the self-healing efficiency for the tensile strength of the highest chitosan content (WPU-C3) was found to be 47%. The surface scratch was also completely restored. The efficiency of the sample with the lowest chitosan content (WPU-C1) was found to be 35%, while that of the control sample without chitosan (WPU-C0) was 4%. The self-healing properties of the as-prepared films were attributed to the exchange reactions between the hydroxyl groups of chitosan and the urethane groups in the films at elevated temperature. It is inferred that self-healing WPU can be synthesized by chain extension with chitosan.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1674 ◽  
Author(s):  
Jing-Yu Liang ◽  
Se-Ra Shin ◽  
Soo-Hyoung Lee ◽  
Dai-Soo Lee

With limited biomass that can be currently utilized as a renewable resource, it is important to develop a method to convert biomass into materials that can replace fossil fuel product. In this paper, eugenol, a bio-based allyl chain-substituted guaiacol, was used to synthesize self-healable copolymers. Eugenol terminated polyurethane prepolymer (ETPU) was synthesized from eugenol and polyurethane prepolymers terminated with isocyanate groups. ETPU contained two allyl groups. Self-healing copolymer networks were obtained by copolymerization of ETPU and styrene monomer via free radical polymerization. Effects of ETPU content on the properties of copolymers were then studied. These copolymers containing ETPU exhibited good thermal stability and mechanical properties. These copolymers showed higher tensile strength and elongation at break than PS. Their maximum tensile strength reached 19 MPa. In addition, these copolymers showed self-healing property at elevated temperature due to the reversible nature of urethane units in ETPU.


2011 ◽  
Vol 43 (6) ◽  
pp. 529-541 ◽  
Author(s):  
J. Datta ◽  
J. T. Haponiuk

In this work, the influence of glycols on the glycolysis process and the properties of obtained polyurethanes were investigated. The glycolysates were produced via glycolysis of waste polyurethane foam in the reaction with one of the following glycols: 1,3-propanediol, 1,5-pentanediol, and 1,6-hexanediol.The reactions were carried out for different mass ratios of polyurethane wastes to glycolysis agent, i.e. 6:1, 8:1, and 10:1. Polyurethanes were synthesized from the obtained intermediates by a one-step method of mixing polymeric di-isocyanate and the glycolysis products with molecular masses ranging from 700 to 1000, while a polyol (Poles 55/20) was used as a chain elongation agent. The influence of glycolysates on tensile strength and elongation at break of polyurethanes was investigated using a Zwick universal tensile tester. Thermal decomposition of the obtained glycolysates and polyurethanes was investigated by thermogravimetry coupled with Fourier transform infrared spectroscopy. It has been found that of all used glycols, 1,6-hexanediol gives the best improvement in the thermal stability of polyurethanes during the glycolysis process. The mean hardness of polyurethanes decreases but rebound resilience increases with chain length of the glycol used for obtaining glycolysates.


2011 ◽  
Vol 287-290 ◽  
pp. 1532-1537 ◽  
Author(s):  
Xiao Juan Lai ◽  
Yi Ding Shen ◽  
Lei Wang

Waterborne polyurethane emulsions were synthesized with isophorone diisocyanate(IPDI), dihydromethyl propionic acid(DMPA) and poly-ε-caprolactone glycol(PCL), and then reacted with hydroxy-ethyl acrylate(HEA) and 3-aminopropyltriethoxylsilane(APTES) to cap the terminal -NCO groups. The polyurethane emulsions were used to copolymerize with acrylates to synthesize the modified waterborne polyurethane-acrylate hybrid emulsions. The structure, thermal stability and crystallinity of modified polyurethane were studied by FTIR, TG, XRD and the mechanical properties of modified polyurethane films was also investigated. The results show that crystallization of the modified waterborne polyurethane decreases and thermal stability is improved. When the mass fraction of acrylate is 20% and APTES content is 15%, tensile strength of the modified polyurethane films can reach 23.9MPa and elongation at break is 247%.


2012 ◽  
Vol 427 ◽  
pp. 98-103 ◽  
Author(s):  
Wei Hong ◽  
Qing Shan Li ◽  
Wei An Yu ◽  
Jing Sun ◽  
Jun Liu ◽  
...  

Prepared a series of castor oil modified NaHSO3 waterborne blocked polyurethane, discussed the influence on the emulsion stability by C.O. addition amount, R value, DMPA and the influences on latex film mechanical property and water absorption by C.O. content, R value. Then analyzed the characterization by FTIP and DSC, its shown that emulsion is stable when the R value controlled in the range of 1.4~1.8 and the stability will become poor with the increase of C.O. content; and with the increase of R value the elongation at break of latex film reduced and tensile strength increased. In short the C.O.s mixing can make latex film initial decomposition temperature increased by 60, reduced elongation at break, increased tensile strength and reduced the water absorption.


Author(s):  
Biao Su ◽  
Heidi Moe Føre ◽  
Eduardo Grimaldo

Abstract This paper presents a comparative study of mechanical properties of biodegradable PBSAT (polybutylene succinate co-adipate-co-terephthalate) and conventional polyamide (PA) gillnets used in Norwegian fisheries. Field tests were performed to simulate abandoned, lost, or otherwise discarded fishing gear. Changes in mechanical properties of PBSAT and PA nets in two Norwegian coastal environments were studied. Samples of biodegradable PBSAT gillnets and PA gillnets were placed inside modified lobster pots at four different locations: two outside the island Hitra in the middle of Norway and two outside Tromsø in the north of Norway. For each pot, seawater temperature was logged each hour, and net samples were retrieved for analyses at 3 to 9 months intervals. Tensile strength testing was performed to determine and compare mechanical properties of biodegradable and PA monofilaments and gillnets. Comparative analyses were conducted, aimed at investigating the different behaviors of biodegradable material and conventional PA material, and the possible influence of seawater temperature on the degradation process of biodegradable PBSAT gillnets. Reduced tensile strength and elongation at break, and a slight increase in stiffness was observed for both PA and PBSAT monofilaments after the field trial at Hitra, indicating degradation of both polymer materials. After 25 months immersion in seawater, the PBSAT gillnets exhibited a significant reduction of tensile strength due to seawater exposure (35%), and the tensile strength of PBSAT gillnets was then 26% lower than the average strength of the PA net samples.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2928 ◽  
Author(s):  
Dae-Woo Lee ◽  
Han-Na Kim ◽  
Dai-Soo Lee

Azomethine diols (AMDs) were synthesized by condensation between a terephthalic aldehyde, polyether diamine, and ethanol amine. The synthesized AMDs were employed to introduce azomethine groups into the backbones of polyurethane elastomers (PUEs). Different AMDs were designed to control the concentration and distribution of azomethine groups in PUEs. In this study, we explored the intrinsic self-healing of AMD-based PUEs by azomethine metathesis. Particularly, the effects of the concentration and distribution of the azomethine groups on the AMD-based PUEs were considered. Consequently, as the azomethine group concentration increased and the distribution became denser, the self-healing properties improved. With AMD3-40, the self-healing efficiency reached 86% at 130 °C after 30 min. This represents a 150% improvement over the control PUE. Additionally, as the AMD content increased, the mechanical properties improved. With AMD3-40, the tensile strength reached 50 MPa. Therefore, we concluded that the self-healing and mechanical properties of PUEs can potentially be tailored for applications by adjusting the concentration and design of AMD structure for PUEs.


Sign in / Sign up

Export Citation Format

Share Document