Ion Exchange Dependent Electroactive Phase Content and Electrical Properties of Poly(vinylidene fluoride)/Na(M)Y Composites

2015 ◽  
Vol 119 (9) ◽  
pp. 5211-5217 ◽  
Author(s):  
A. Catarina Lopes ◽  
I. Correia Neves ◽  
S. Lanceros Mendez
1991 ◽  
Vol 202 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Akiyoshi Takeno ◽  
Norimasa Okui ◽  
Tetsuji Kitoh ◽  
Michiharu Muraoka ◽  
Susumu Umemoto ◽  
...  

ChemPhysChem ◽  
2013 ◽  
Vol 14 (9) ◽  
pp. 1926-1933 ◽  
Author(s):  
Ana Catarina Lopes ◽  
Sonia A. C. Carabineiro ◽  
Manuel Fernando R. Pereira ◽  
Gabriela Botelho ◽  
Senentxu Lanceros-Mendez

Author(s):  
Saurav Arora

Until few years, the so-called implausible science, homeopathy, was on the verge of being rejected on conventional physicochemical grounds. The mere selection of ultrahigh dilutions (UHD) (homeopathic potencies) for experimentation by mainstream scientists seemed impossible, but the curiosity to explore the science behind homeopathy kept igniting intellectual alma mater who subjected homeopathy to laboratories and test tubes, to know beyond its clinical application. Still, there exist a huge gap and a challenge to convince a conventional scientist to go beyond his domains and look for something which is apparently invisible (beyond Avogadro). But gradually we are overcoming this dogma and exploring the finer aspects and applications of UHDs. Much research has been undertaken, at least, to protect the identity of UHDs, and we are now verge of proving the plausibility of homeopathy from every aspect. This issue of International Journal of High Dilution Research features two interesting articles on nature of UHDs and their unconventional application. The first article by NC Sukul et al aimed to decipher the nature of the water structure of UHDs of two commonly used homeopathic drugs Natrum muriaticum and Sulphur by Laser Raman Spectroscopy. This work is in the series undertaken by the group, who earlier experimented using Nuclear Magnetic Resonance; Electronic, Vibrational and Raman spectroscopy to shown differences in UHDs of various drugs. The present experiment could differentiate the intensities (potencies) of Nat-m and Sulph when compared to their controls, on the basis of hydrogen bond strength and free OH groups. The second article by Nandy et al proposes a new dimension to the application of UHD. In an interesting manner, the author used UHDs of Ferrum metallicum and Zincum oxidatum to improve the electrical properties of the electroactive Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP). The PVDF-HFP composite films were synthesized in their usual way, but an incorporation of Ferrum and Zinc-o could make the film as homeo-PVDF-composite. This enhancement of the electrical properties and are possibly due to the presence of nanoparticle, as hypothesized by the group. The nature and application of UHDs are promising but challenging areas, which can only be validated through extensive research and validation. The realm of UHDs is expanding, and the day is not far when plausibility of homeopathy would be proved from every aspect, but at the same time we should also keep the momentum of research at pace in clinical research too!


2017 ◽  
Vol 40 (S1) ◽  
pp. E88-E101 ◽  
Author(s):  
Lulu Zhang ◽  
Bin Yang ◽  
Ru Xia ◽  
Jiasheng Qian ◽  
Ming Cao ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3292
Author(s):  
Wu Guo ◽  
Zhaogang Liu ◽  
Yan Zhu ◽  
Li Li

Based on poly(vinylidene fluoride)/graphene (PVDF/GP) nano-composite powder, with high β-phase content (>90%), prepared on our self-designed pan-mill mechanochemical reactor, the micro-injection molding of PVDF/GP composite was successfully realized and micro-parts with good replication and dimensional stability were achieved. The filling behaviors and the structure evolution of the composite during the extremely narrow channel of the micro-injection molding were systematically studied. In contrast to conventional injection molding, the extremely high injection speed and small cavity of micro-injection molding produced a high shear force and cooling rate, leading to the obvious “skin-core” structure of the micro-parts and the orientation of both PVDF and GP in the shear layer, thus, endowing the micro-parts with a higher melting point and crystallinity and also inducing the transformation of more α-phase PVDF to β-phase. At the injection speed of 500 mm/s, the β-phase PVDF in the micro-part was 78%, almost two times of that in the macro-part, which was beneficial to improve the dielectric properties. The micro-part had the higher tensile strength (57.6 MPa) and elongation at break (53.6%) than those of the macro-part, due to its increased crystallinity and β-phase content.


RSC Advances ◽  
2017 ◽  
Vol 7 (77) ◽  
pp. 48712-48722 ◽  
Author(s):  
Ji Eun Lee ◽  
Yanting Guo ◽  
Richard Eungkee Lee ◽  
Siu Ning Leung

A new strategy using non-isothermal crystallization and supercritical CO2 processing is found to promote the electroactive phase content in PVDF.


Sign in / Sign up

Export Citation Format

Share Document