scholarly journals Fabrication of electroactive poly(vinylidene fluoride) through non-isothermal crystallization and supercritical CO2 processing

RSC Advances ◽  
2017 ◽  
Vol 7 (77) ◽  
pp. 48712-48722 ◽  
Author(s):  
Ji Eun Lee ◽  
Yanting Guo ◽  
Richard Eungkee Lee ◽  
Siu Ning Leung

A new strategy using non-isothermal crystallization and supercritical CO2 processing is found to promote the electroactive phase content in PVDF.

ChemPhysChem ◽  
2013 ◽  
Vol 14 (9) ◽  
pp. 1926-1933 ◽  
Author(s):  
Ana Catarina Lopes ◽  
Sonia A. C. Carabineiro ◽  
Manuel Fernando R. Pereira ◽  
Gabriela Botelho ◽  
Senentxu Lanceros-Mendez

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3292
Author(s):  
Wu Guo ◽  
Zhaogang Liu ◽  
Yan Zhu ◽  
Li Li

Based on poly(vinylidene fluoride)/graphene (PVDF/GP) nano-composite powder, with high β-phase content (>90%), prepared on our self-designed pan-mill mechanochemical reactor, the micro-injection molding of PVDF/GP composite was successfully realized and micro-parts with good replication and dimensional stability were achieved. The filling behaviors and the structure evolution of the composite during the extremely narrow channel of the micro-injection molding were systematically studied. In contrast to conventional injection molding, the extremely high injection speed and small cavity of micro-injection molding produced a high shear force and cooling rate, leading to the obvious “skin-core” structure of the micro-parts and the orientation of both PVDF and GP in the shear layer, thus, endowing the micro-parts with a higher melting point and crystallinity and also inducing the transformation of more α-phase PVDF to β-phase. At the injection speed of 500 mm/s, the β-phase PVDF in the micro-part was 78%, almost two times of that in the macro-part, which was beneficial to improve the dielectric properties. The micro-part had the higher tensile strength (57.6 MPa) and elongation at break (53.6%) than those of the macro-part, due to its increased crystallinity and β-phase content.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 361 ◽  
Author(s):  
Kartik Behera ◽  
Mithilesh Yadav ◽  
Fang-Chyou Chiu ◽  
Kyong Rhee

In this study, a graphene nanoplatelet (GNP) was used as a reinforcing filler to prepare poly(vinylidene fluoride) (PVDF)/high density polyethylene (HDPE) blend-based nanocomposites through a melt mixing method. Scanning electron microscopy confirmed that the GNP was mainly distributed within the PVDF matrix phase. X-ray diffraction analysis showed that PVDF and HDPE retained their crystal structure in the blend and composites. Thermogravimetric analysis showed that the addition of GNP enhanced the thermal stability of the blend, which was more evident in a nitrogen environment than in an air environment. Differential scanning calorimetry results showed that GNP facilitated the nucleation of PVDF and HDPE in the composites upon crystallization. The activation energy for non-isothermal crystallization of PVDF increased with increasing GNP loading in the composites. The Avrami n values ranged from 1.9–3.8 for isothermal crystallization of PVDF in different samples. The Young’s and flexural moduli of the blend improved by more than 20% at 2 phr GNP loading in the composites. The measured rheological properties confirmed the formation of a pseudo-network structure of GNP-PVDF in the composites. The electrical resistivity of the blend reduced by three orders at a 3-phr GNP loading. The PVDF/HDPE blend and composites showed interesting application prospects for electromechanical devices and capacitors.


Polimery ◽  
2021 ◽  
Vol 66 (10) ◽  
pp. 532
Author(s):  
Aminatul Sobirah Zahari ◽  
Muhammad Hafiz Mazwir ◽  
Izan Izwan Misnon

A significant influence of the molecular weight on the dielectric properties and piezoelectric constant of poly(vinylidene fluoride) (PVDF) membranes obtained by electrospinning was demonstrated. Electrochemical impedance spectroscopy and d33 meter were used to evaluate dielectric properties and piezoelectric constant respectively. The presence of the β-phase was determined by Fourier transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD). The membranes with the lowest molecular weight (180,000 g/mol) possessed the best dielectric properties. They also had the highest piezoelectric constant (21 pC/N) and dielectric constant (2.9 at 50 Hz) as well as the highest β-phase content (80.25%).


Sign in / Sign up

Export Citation Format

Share Document