Surface Chemistry and Lithium-Ion Exchange in LiMn2O4for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines

2016 ◽  
Vol 120 (29) ◽  
pp. 15875-15883 ◽  
Author(s):  
Florencia Marchini ◽  
Diego Rubi ◽  
Maria del Pozo ◽  
Federcio J. Williams ◽  
Ernesto J. Calvo
Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Liangzhu Zhu ◽  
Anil V. Virkar

Na-β″-alumina (Na2O.~6Al2O3) is known to be an excellent sodium ion conductor in battery and sensor applications. In this study we report fabrication of Na- β″-alumina + YSZ dual phase composite to mitigate moisture and CO2 corrosion that otherwise can lead to degradation in pure Na-β″-alumina conductor. Subsequently, we heat-treated the samples in molten AgNO3 and LiNO3 to respectively form Ag-β″-alumina + YSZ and Li-β″-alumina + YSZ to investigate their potential applications in silver- and lithium-ion solid state batteries. Ion exchange fronts were captured via SEM and EDS techniques. Their ionic conductivities were measured using electrochemical impedance spectroscopy. Both ion exchange rates and ionic conductivities of these composite ionic conductors were firstly reported here and measured as a function of ion exchange time and temperature.


2014 ◽  
Vol 43 (23) ◽  
pp. 8933-8939 ◽  
Author(s):  
Ramesh Chitrakar ◽  
Yoji Makita ◽  
Kenta Ooi ◽  
Akinari Sonoda

The high lithium uptake of H2TiO3 from brine is due to its lithium ion-sieve property. Exchange sites are too narrow for Na, K, Mg and Ca to enter the interlayer space due to steric effects.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Tahar Azib ◽  
Claire Thaury ◽  
Fermin Cuevas ◽  
Eric Leroy ◽  
Christian Jordy ◽  
...  

Embedding silicon nanoparticles in an intermetallic matrix is a promising strategy to produce remarkable bulk anode materials for lithium-ion (Li-ion) batteries with low potential, high electrochemical capacity and good cycling stability. These composite materials can be synthetized at a large scale using mechanical milling. However, for Si-Ni3Sn4 composites, milling also induces a chemical reaction between the two components leading to the formation of free Sn and NiSi2, which is detrimental to the performance of the electrode. To prevent this reaction, a modification of the surface chemistry of the silicon has been undertaken. Si nanoparticles coated with a surface layer of either carbon or oxide were used instead of pure silicon. The influence of the coating on the composition, (micro)structure and electrochemical properties of Si-Ni3Sn4 composites is studied and compared with that of pure Si. Si coating strongly reduces the reaction between Si and Ni3Sn4 during milling. Moreover, contrary to pure silicon, Si-coated composites have a plate-like morphology in which the surface-modified silicon particles are surrounded by a nanostructured, Ni3Sn4-based matrix leading to smooth potential profiles during electrochemical cycling. The chemical homogeneity of the matrix is more uniform for carbon-coated than for oxygen-coated silicon. As a consequence, different electrochemical behaviors are obtained depending on the surface chemistry, with better lithiation properties for the carbon-covered silicon able to deliver over 500 mAh/g for at least 400 cycles.


2018 ◽  
Vol 8 (11) ◽  
pp. 2252 ◽  
Author(s):  
Wei-Sheng Chen ◽  
Cheng-Han Lee ◽  
Hsing-Jung Ho

Purification of lithium carbonate, in the battery industry, is an important step in the future. In this experiment, the waste lithium-ion batteries were crushed, sieved, leached with sulfuric acid, eluted with an extractant, and finally sulphate solutions were extracted, through selective precipitation. Next, sodium carbonate was first added to the sulphate solutions, to precipitate lithium carbonate (Li2CO3). After that, lithium carbonate was put into the water to create lithium carbonate slurry and CO2 was added to it. The aeration of CO2 and the hydrogenation temperature were controlled, in this experiment. Subsequently, Dowex G26 resin was used to remove impurities, such as the calcium and sodium in lithium carbonate. Moreover, the adsorption isotherms, described by means of the Langmuir and Freundlich isotherms, were used to investigate the ion-exchange behaviors of impurities. After removing the impurities, the different heating rate was controlled to obtain lithium carbonate. In a nutshell, this study showed the optimum condition of CO2 aeration, hydrogenation temperature, ion-exchange resin and the heating rate to get high yields and purity of lithium carbonate.


2016 ◽  
Vol 216 ◽  
pp. 94-101 ◽  
Author(s):  
Wenming Liao ◽  
Jianhua Tian ◽  
Zhongqiang Shan ◽  
Ren Na ◽  
Lan Cui ◽  
...  

2019 ◽  
Vol 21 (3) ◽  
pp. 1029-1037 ◽  
Author(s):  
Donghai Wu ◽  
Shuaiwei Wang ◽  
Shouren Zhang ◽  
Yibiao Liu ◽  
Yingchun Ding ◽  
...  

Surface chemistry reconfiguration is employed to acquire stable penta-silicene with tunable properties for use in flexible lithium-ion battery anodes.


2005 ◽  
Vol 21 (07) ◽  
pp. 782-785
Author(s):  
LOU Tai-ping ◽  
◽  
LI Da-gang ◽  
DAI Hou-chen ◽  
TANG Shu-huan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document