Direct In Situ Hybridized Interfacial Quantification to Stimulate Highly Flexile Self-Powered Photodetector

2018 ◽  
Vol 122 (23) ◽  
pp. 12177-12184 ◽  
Author(s):  
Yuvasree Purusothaman ◽  
Nagamalleswara Rao Alluri ◽  
Arunkumar Chandrasekhar ◽  
Venkateswaran Vivekananthan ◽  
Sang-Jae Kim
Keyword(s):  
2019 ◽  
Vol 5 (4) ◽  
pp. eaav6437 ◽  
Author(s):  
Di Liu ◽  
Xing Yin ◽  
Hengyu Guo ◽  
Linglin Zhou ◽  
Xinyuan Li ◽  
...  

In situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m−2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.


2020 ◽  
Vol 10 (10) ◽  
pp. 3493
Author(s):  
Minjung Kim ◽  
Vignesh Krishnamoorthi Kaliannagounder ◽  
Afeesh Rajan Unnithan ◽  
Chan Hee Park ◽  
Cheol Sang Kim ◽  
...  

Energy harvesting technologies have found significant importance over the past decades due to the increasing demand of energy and self-powered design of electronic and implantable devices. Herein, we demonstrate the design and application of in situ poled highly flexible piezoelectric poly vinylidene fluoride (PVDF) graphene oxide (GO) hybrid nanofibers in aligned mode for multifaceted applications from locomotion sensors to self-powered motion monitoring. Here we exploited the simplest and most versatile method, called electrospinning, to fabricate the in situ poled nanofibers by transforming non-polar α-phase of PVDF to polar β- phase structures for enhanced piezoelectricity under high bias voltage. The flexible piezoelectric device fabricated using the aligned mode generates an improved output voltage of 2.1 V at a uniform force of 12 N. The effective piezoelectric transduction exhibited by the proposed system was tested for its multiple efficacies as a locomotion detector, bio-e-skin, smart chairs and so on.


2015 ◽  
Vol 3 (45) ◽  
pp. 11806-11814 ◽  
Author(s):  
Xiaoliang Chen ◽  
Jinyou Shao ◽  
Ningli An ◽  
Xiangming Li ◽  
Hongmiao Tian ◽  
...  

We propose an in situ poling of vertically well-aligned piezoelectric nanowire arrays with preferential polarization orientation as highly sensitive self-powered sensors for monitoring vital signs.


1987 ◽  
Vol 44 (S1) ◽  
pp. s154-s162 ◽  
Author(s):  
M. H. Holoka ◽  
S. G. Lawrence

An apparatus which draws lake water, either filtered or unaltered, at a preestablished rate through four 40.75 L vessels incubated in situ is described. The system provides facilities for the synchronous addition of experimental liquids such as toxicants. All components are readily transportable. The system is self-powered for periods up to one month depending on the rate of flow chosen. This apparatus provides for the isolation of the zooplankton community from other compartments in the lake, incubation in natural conditions, experimental periods of from 1 to 30 d, maintenance of chosen concentrations of added materials continuously or non-continuously as appropriate, and entry of food organisms with concomitant dilution of wastes and metabolites.The responses of selected zooplankton species or of zooplankton communities to impoundment, manipulation of predator or prey organisms and the addition of nutrient or toxic materials can be assessed as they occur in the naturally varying conditions of a lake environment while the population is being held as a separate and defined part of the whole-lake ecosystem.Methods for the construction and use of the apparatus, and for collection of samples are described. Methods for enumerating organisms in several sizes of subsamples are assessed. Data generated in several experiments are analyzed using standard statistical methods and percent similarity indices.


Nano Energy ◽  
2019 ◽  
Vol 66 ◽  
pp. 104117 ◽  
Author(s):  
Yu Bai ◽  
Liang Xu ◽  
Chuan He ◽  
Laipan Zhu ◽  
Xiaodan Yang ◽  
...  

2021 ◽  
Author(s):  
Hailong Ma ◽  
Lin Jia ◽  
Yunan Lin ◽  
Huajing Fang ◽  
Wenting Wu ◽  
...  

Nano Research ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Ranran Zhuo ◽  
Longhui Zeng ◽  
Huiyu Yuan ◽  
Di Wu ◽  
Yuange Wang ◽  
...  

2014 ◽  
Vol 126 (2) ◽  
pp. 49
Author(s):  
Madhu Bhaskaran

I have presented the use of nano-indentation to characterise in situ the voltage and current generation of piezoelectric thin films (Bhaskaran et al. 2011b; Nili et al. 2013). These findings provide fundamental insight into thin film properties and geometries which determine their efficiency for energy generation. This work presents the controlled observation of nanoscale piezoelectric voltage (~40 mV) and current generation (~200 pA), allowing accurate quantification and mapping of force function variations. The implications of these findings include the potential to generate power by application of pressure, enabling possibilities of charging portable devices by typing or pressing touch screen interfaces. Longer term implications include the possibility to harness pressure from biorhythms such as blood flow and respiration to power implantable sensors and devices (such as cardiac pacemakers).


Sign in / Sign up

Export Citation Format

Share Document