Crucial Impact of Hydrophilicity on the Self-Assembled 2D Colloidal Crystals Using Langmuir–Blodgett Method

Langmuir ◽  
2020 ◽  
Vol 36 (34) ◽  
pp. 10061-10068
Author(s):  
Heping Wu ◽  
Gang Niu ◽  
Wei Ren ◽  
Luyue Jiang ◽  
Owen Liang ◽  
...  
1991 ◽  
Vol 255 ◽  
Author(s):  
Erwin P. Enriquez ◽  
Edward T. Samulski

AbstractPoly(γ-benzyl-L-glutamate) (PBLG) derivatized at its N-terminus with lipoic acid, a disulfide-containing moiety, self-assembles on gold from helicogenic solvents to give a thin film with the polypeptide α-helices orientation distribution different from the planar orientation in the unlabeled, physisorbed PBLG films (control) and Langmuir-Blodgett monolayers. The SA films were studied by angle-dependent XPS, reflection-absorption FTIR spectroscopy, and ellipsometry. The IR dichroic properties of the amide I and amide II bands were used to infer the orientational distribution of the helices in the self-assembled film and lead to two extreme pictures of the helix axis distribution function: (a) random (hemispherical distribution) and (b) perfect order with a tilt of 53° from the surface normal. Additional characterization is necessary to differentiate between these two distributions.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


2017 ◽  
Vol 41 (20) ◽  
pp. 11955-11961 ◽  
Author(s):  
Haoyuan Wang ◽  
Xia Kong ◽  
Shuai Zhao ◽  
Junshi Wu ◽  
Xiyou Li ◽  
...  

High-sensitive, quick-response room-temperature sensor to NO2 and NH3 is developed, based on QLS film of a new amphiphilic tris(phthalocyaninato) europium.


2015 ◽  
Vol 3 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Sheng Zhu ◽  
Hui Zhang ◽  
Ping Chen ◽  
Lin-Hui Nie ◽  
Chuan-Hao Li ◽  
...  

A facile protocol for the self-assembly of the rGO/β-MnO2 hybrid hydrogel with ultrafine structure and precise control of mass-loading for high performance supercapacitors is reported.


Sign in / Sign up

Export Citation Format

Share Document