Adsorption of Epoxy Oligomers on Iron Oxide Surfaces: The Importance of Surface Treatment and the Role of Entropy

Langmuir ◽  
2021 ◽  
Author(s):  
Charlie R. Wand ◽  
Simon Gibbon ◽  
Flor R. Siperstein
Chemosphere ◽  
2009 ◽  
Vol 74 (8) ◽  
pp. 1079-1084 ◽  
Author(s):  
Yu-Wei Chen ◽  
Hoang-Yen Thi Truong ◽  
Nelson Belzile

Nano Select ◽  
2021 ◽  
Author(s):  
Ramis Arbi ◽  
Amr Ibrahim ◽  
Liora Goldring‐Vandergeest ◽  
Kunyu Liang ◽  
Greg Hanta ◽  
...  

2007 ◽  
Vol 21 (05) ◽  
pp. 731-736
Author(s):  
V. SIMON ◽  
P. RIEDL ◽  
E. TATARU

Glass stability and the structural role of iron oxide in x Fe 2 O 3(100-x)[ B 2 O 3– MO ] systems ( M=Ca , Sr or Ba , 0≤x≤30 mol%) were estimated from differential thermal analysis. The results suggest structural changes characteristic for the transition from short range to intermediate range order as the cationic field strength of the alkaline earths increases. In contrast, the iron addition has an opposite effect and determines a higher glass stability of these systems.


2016 ◽  
Vol 6 (11) ◽  
pp. 3984-3996 ◽  
Author(s):  
Jithin John Varghese ◽  
Quang Thang Trinh ◽  
Samir H. Mushrif

Of the three mechanisms for activation of methane on copper and copper oxide surfaces, the under-coordinated Cu–O site pair mediated mechanism on CuO surfaces has the lowest activation energy barriers.


Author(s):  
William W. F. Chong ◽  
Hedong Zhang

Using Molecular Dynamics (MD) simulation, the current study determined the surface forces between iron oxide surfaces when immersed in methyl oleate. Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field was used to model the methyl oleate molecules. For the nano-confinement simulation, the iron oxide wall was modelled from its crystal structure. The nano-confinement simulation model was setup in a manner where the confined methyl oleate molecules were in contact with the bulk molecules surrounding each side of the iron oxide walls. Through the simulation, the load-separation gap profile was obtained by reducing the separation gap between the ferric oxide walls. When the separation gap was reduced from 2.75 nm to 1.88 nm, the load is shown to increase monotonically. Such increase in load bearing ability of the contact is observed to correspond to a more densely packed methyl oleate molecules, reflected by four well-formed layers across the separation gap. As the gap is dropped from 1.88 nm to 1.63 nm, the load instead reduces, indicating deteriorating load bearing ability of the contact. However, the load bearing ability of the contact is then shown to recover when the gap was further reduced till 1.38 nm. This oscillatory load trend is shown to be as a result of a layer of methyl oleate molecules being squeezed out of contact, corroborated by the density profile change where four well-formed layers were reduced to only three layers from 1.88 nm to 1.38 nm gap. This also indicates that the simulated contact exhibits structural forces, known as solvation forces. Thus, the MD simulation discussed in this study is demonstrated to be capable of providing a foundation to allow for a multi-scale simulation, integrating various force laws at different length scales, to study larger scale tribological contacts.


Sign in / Sign up

Export Citation Format

Share Document