Regulation of the Enzymatic Activities of Lysozyme by the Surface Ligands of Ultrasmall Gold Nanoclusters: The Role of Hydrophobic Interactions

Langmuir ◽  
2021 ◽  
Author(s):  
Ling Cao ◽  
Wen-Qi Chen ◽  
Lian-Jiao Zhou ◽  
Yu-Ying Wang ◽  
Yi Liu ◽  
...  
1998 ◽  
Vol 37 (10-11) ◽  
pp. 1381-1391 ◽  
Author(s):  
Changhai Cu ◽  
Robert Bähring ◽  
Mark L. Mayer

MRS Advances ◽  
2016 ◽  
Vol 1 (26) ◽  
pp. 1891-1902 ◽  
Author(s):  
Francesco Mallamace ◽  
Carmelo Corsaro ◽  
Domenico Mallamace ◽  
Cirino Vasi ◽  
Sebastiano Vasi ◽  
...  

ABSTRACTWe discuss recent literature data on the relaxation times (the primary tα), viscosity, and self-diffusion in water-glycerol and water-methanol mixtures across a wide temperature range from the stable water phase to the deep supercooled regime (373–147K). In particular, to clarify the role of hydrophilicity interactions (the hydrogen bonds) and hydrophobic interactions we study the mixture in terms of the water molar fraction (XW) with fixed temperatures at 5K steps across the entire composition range, and we find a marked deviation from the ideal thermodynamic behavior of the transport functions. This deviation is strongly T and XW dependent and spans values that range from two orders of magnitude at the highest temperature to more than five in the deeply supercooled regime (more precisely, at ≃200K). We analyze these deviations in terms of how the measured values differ from ideal values and find that the hydrogen-bonding water network dominates system properties up to XW = 0.3. We also examine an Arrhenius plot of the maximum excess value (Δtα(T) vs. 1/T) and find two significant changes due to water: one at the dynamical crossover temperature (TL ≃ 225K, i.e., the locus of the Widom line), and one at T ≃ 315K (the water isothermal compressibility χT minimum).


1970 ◽  
Vol 59 (6) ◽  
pp. 865-868 ◽  
Author(s):  
Eric J. Lien ◽  
Mehdi Hussain ◽  
George L. Tong

2018 ◽  
Vol 262 ◽  
pp. 80-89 ◽  
Author(s):  
Mukesh Kumar Awasthi ◽  
Sanjeev Kumar Awasthi ◽  
Quan Wang ◽  
Mrigendra Kumar Awasthi ◽  
Junchao Zhao ◽  
...  

2012 ◽  
Vol 5 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Vivek Kumar Dwivedi ◽  
Anuj Bhatanagar ◽  
Manu Chaudhary

ABSTRACT We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid per-oxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (p<0.001), malonaldialdehyde (p<0.001) and myloperoxidase (MPO) levels along with significantly increased hemoglobin (p<0.01), RBC (p<0.05), hematocrit (p<0.05) levels and all antioxidant enzymatic activities (SOD, CAT, GR, GPx) in plasma and tissues of ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (p<0.001) increased in the blood of ceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (p<0.001) decreased in ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication.


2003 ◽  
Vol 21 (3) ◽  
pp. 353-365 ◽  
Author(s):  
Olga Tcherkasskaya ◽  
William Sanders ◽  
Veeradej Chynwat ◽  
Eugene A. Davidson ◽  
Cindy S. Orser

2013 ◽  
Vol 288 (23) ◽  
pp. 16905-16915 ◽  
Author(s):  
Angela M. Scott ◽  
Corina E. Antal ◽  
Alexandra C. Newton

The cellular activation of conventional protein kinase C (PKC) isozymes is initiated by the binding of their C2 domains to membranes in response to elevations in intracellular Ca2+. Following this C2 domain-mediated membrane recruitment, the C1 domain binds its membrane-embedded ligand diacylglycerol, resulting in activation of PKC. Here we explore the molecular mechanisms by which the C2 domain controls the initial step in the activation of PKC. Using stopped-flow fluorescence spectroscopy to measure association and dissociation rate constants, we show that hydrophobic interactions are the major driving force in the binding of the C2 domain to anionic membranes, whereas electrostatic interactions dominate in membrane retention. Specifically, mutation of select hydrophobic or select basic residues in the Ca2+-binding loops reduces membrane affinity by distinct mechanisms; mutation of hydrophobic residues primarily alters association rate constants, whereas mutation of charged residues affects dissociation rate constants. Live cell imaging reveals that introduction of these mutations into full-length PKCα not only reduces the Ca2+-dependent translocation to plasma membrane but, by impairing the plasma membrane-sensing role of the C2 domain, causes phorbol ester-triggered redistribution of PKCα to other membranes, such as the Golgi. These data underscore the key role of the C2 domain in driving conventional PKC isozymes to the plasma membrane and reveal that not only the amplitude but also the subcellular location of conventional PKC signaling can be tuned by altering the affinity of this module for membranes.


Sign in / Sign up

Export Citation Format

Share Document