Concentration-Driven Fascinating Vesicle-Fibril Transition Employing Merocyanine 540 and 1-Octyl-3-methylimidazolium Chloride

Langmuir ◽  
2017 ◽  
Vol 33 (38) ◽  
pp. 9811-9821 ◽  
Author(s):  
Rupam Dutta ◽  
Arghajit Pyne ◽  
Sangita Kundu ◽  
Pavel Banerjee ◽  
Nilmoni Sarkar
Keyword(s):  
1999 ◽  
Vol 8 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Robert E. Pyatt ◽  
Laura L. Jenski ◽  
Ruth Allen ◽  
Ken Cornetta ◽  
Rafat Abonour ◽  
...  

1982 ◽  
Vol 60 (4) ◽  
pp. 556-567 ◽  
Author(s):  
Alexandre Fabiato

This report describes an optical system for microspectrophotometry in a single cardiac cell from which the sarcolemma has been removed by microdissection (skinned cardiac cell). This system is attached to the high power inverted microscope used for the microdissection and includes (a) a single variable wavelength microspectrophotometer used to define the spectrum of a given dye or Ca2+ probe; and (b) a dual wavelength, differential microspectrophotometer used to record differentially between the optimum wavelength and a wavelength separated by 25–30 nm. Results are presented using the following optical methods: (a) fluorescence measurements with chlorotetracycline to monitor the amount of Ca2+ bound to the inner face of the sarcoplasmic reticulum (SR) membrane; (b) differential absorption measurements with arsenazo III to measure changes of myoplasmic [Ca2+]free resulting from Ca2+ release from the SR; (c) fluorescence and (or) differential absorption measurements with the potential-sensitive dyes merocyanine 540, NK 2367, and di-S-C3(5) to monitor changes of charge distribution on the SR membrane during Ca2+ accumulation in the SR, as well as before and during Ca2+-induced release of Ca2+ from the SR. A small and rapid signal is observed which precedes the Ca2+-induced release of Ca2+ from the SR. It is detected as an increase of Ca2+ binding inside the SR with chlorotetracycline and as a "hyperpolarization" with potential-sensitive dyes, while no transient change of myoplasmic [Ca2+]free is detected with arsenazo III. This small and rapid signal preceding the Ca2+ release may be a first hint to an understanding of the mechanism whereby a small increase of [Ca2+]free outside the SR triggers Ca2+ release from the SR.


1995 ◽  
Vol 1235 (2) ◽  
pp. 428-436 ◽  
Author(s):  
Johan W.M. Lagerberg ◽  
Karl-Josef Kallen ◽  
Cees W.M. Haest ◽  
John VanSteveninck ◽  
Tom M.A.R. Dubbelman

Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 21-24 ◽  
Author(s):  
OM Smith ◽  
SA Dolan ◽  
JA Dvorak ◽  
TE Wellems ◽  
F Sieber

The purpose of this study was to evaluate the photosensitizing dye merocyanine 540 (MC540) as a means for extracorporeal purging of Plasmodium falciparum-infected erythrocytes from human blood. Parasitized red blood cells bound more dye than nonparasitized cells, and exposure to MC540 and light under conditions that are relatively well tolerated by normal erythrocytes and normal pluripotent hematopoietic stem cells reduced the concentration of parasitized cells by as much as 1,000-fold. Cells parasitized by the chloroquine- sensitive HB3 clone and the chloroquine-resistant Dd2 clone of P falciparum were equally susceptible to MC540-sensitized photolysis. These data suggest the potential usefulness of MC540 in the purging of P falciparum-infected blood.


Sign in / Sign up

Export Citation Format

Share Document