scholarly journals Size-Dependent Submerging of Nanoparticles in Polymer Melts: Effect of Line Tension

2018 ◽  
Vol 51 (7) ◽  
pp. 2411-2417 ◽  
Author(s):  
Shanqiu Liu ◽  
Anupam Pandey ◽  
Joost Duvigneau ◽  
Julius Vancso ◽  
Jacco H. Snoeijer
2020 ◽  
Author(s):  
Sang Noh ◽  
Rebecca Notman

The interactions between heterogeneous components in a biomimetic bilayer can control its physical properties such as its rigidity, local and bulk curvature and propensity towards phenomena such as membrane fission and fusion. In particular, nanoparticles (NPs) have been subjects of intense interest due to their similar scale to the bilayer width and its ability to affect local membrane structure. Generally, it is understood that hydrophobic components are energetically favoured to adsorb within the hydrophobic interior of a biomimetic bilayer. However, how such NPs interact in the presence of heterogeneous aggregates in the bilayer has been the subject of much debate. To better understand the effects of the integration of nanoscale components on heterogeneous mixed bilayer, we have simulated a series of generic hydrophobic NPs interacting with a phase-separating two-component surfactant bilayer. We find that the hydrophobic NP tends to aggregate at the phase interface, acting as a line tension relaxant i.e. a lineactant on the phase separated interface, which results in a variety of demixing behavior. We demonstrate that depending on the size of the NP, the localized softening of surfactants and the formation of a mixing gradient of surfactants can drive the a cap/bud formation around the NP, as well as the formation of a NP-micelle structure<br>


2020 ◽  
Author(s):  
Sang Noh ◽  
Rebecca Notman

The interactions between heterogeneous components in a biomimetic bilayer controls its physical properties such as its rigidity, local and bulk curvature and propensity towards phenomena such as membrane fission and fusion. In particular, membrane proteins (MPs) and nanoparticles (NPs) have been subjects of intense interest due to their similar scale to the bilayer width and because of their ability to affect local membrane structure. However, how such NPs interact in the presence of heterogeneous aggregates in the bilayer has been the subject of much debate, especially its effect on raft-like structures. To better understand the effects of hydrophobic integration of nanoscale components on such raft-like structures, we have simulated a series of generic hydrophobic NPs interacting with a phase-separating two-component surfactant bilayer. We find that the hydrophobic NP tends to aggregate at the phase interface, acting as a line tension relaxant i.e. a lineactant on the phase separated interface, which results in differing demixing behavior. In particular, we demonstrate that depending on the size of the NP, the effect of the line tension can drive the a cap/bud formation around the NP, ultimately resulting in the formation of a NP-micelle structure.<br><br>


2020 ◽  
Vol 6 (29) ◽  
pp. eabb2307 ◽  
Author(s):  
Lin Wang ◽  
Ruoxi Wang ◽  
Jing Wang ◽  
Tak-Sing Wong

Many natural surfaces are capable of rapidly shedding water droplets—a phenomenon that has been attributed to the presence of low solid fraction textures (Φs ~ 0.01). However, recent observations revealed the presence of unusually high solid fraction nanoscale textures (Φs ~ 0.25 to 0.64) on water-repellent insect surfaces, which cannot be explained by existing wetting theories. Here, we show that the contact time of bouncing droplets on high solid fraction surfaces can be reduced by reducing the texture size to ~100 nm. We demonstrated that the texture size–dependent contact time reduction could be attributed to the dominance of line tension on nanotextures and that compact arrangement of nanotextures is essential to withstand the impact pressure of raindrops. Our findings illustrate a potential survival strategy of insects to rapidly shed impacting raindrops, and suggest a previously unidentified design principle to engineering robust water-repellent materials for applications including miniaturized drones.


2020 ◽  
Author(s):  
Sang Noh ◽  
Rebecca Notman

The interactions between heterogeneous components in a biomimetic bilayer controls its physical properties such as its rigidity, local and bulk curvature and propensity towards phenomena such as membrane fission and fusion. In particular, membrane proteins (MPs) and nanoparticles (NPs) have been subjects of intense interest due to their similar scale to the bilayer width and because of their ability to affect local membrane structure. However, how such NPs interact in the presence of heterogeneous aggregates in the bilayer has been the subject of much debate, especially its effect on raft-like structures. To better understand the effects of hydrophobic integration of nanoscale components on such raft-like structures, we have simulated a series of generic hydrophobic NPs interacting with a phase-separating two-component surfactant bilayer. We find that the hydrophobic NP tends to aggregate at the phase interface, acting as a line tension relaxant i.e. a lineactant on the phase separated interface, which results in differing demixing behavior. In particular, we demonstrate that depending on the size of the NP, the effect of the line tension can drive the a cap/bud formation around the NP, ultimately resulting in the formation of a NP-micelle structure.<br><br>


2020 ◽  
Author(s):  
Sang Noh ◽  
Rebecca Notman

The interactions between heterogeneous components in a biomimetic bilayer can control its physical properties such as its rigidity, local and bulk curvature and propensity towards phenomena such as membrane fission and fusion. In particular, nanoparticles (NPs) have been subjects of intense interest due to their similar scale to the bilayer width and its ability to affect local membrane structure. Generally, it is understood that hydrophobic components are energetically favoured to adsorb within the hydrophobic interior of a biomimetic bilayer. However, how such NPs interact in the presence of heterogeneous aggregates in the bilayer has been the subject of much debate. To better understand the effects of the integration of nanoscale components on heterogeneous mixed bilayer, we have simulated a series of generic hydrophobic NPs interacting with a phase-separating two-component surfactant bilayer. We find that the hydrophobic NP tends to aggregate at the phase interface, acting as a line tension relaxant i.e. a lineactant on the phase separated interface, which results in a variety of demixing behavior. We demonstrate that depending on the size of the NP, the localized softening of surfactants and the formation of a mixing gradient of surfactants can drive the a cap/bud formation around the NP, as well as the formation of a NP-micelle structure<br>


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Sign in / Sign up

Export Citation Format

Share Document