Molecular Computations of Preferential Interaction Coefficients of IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose and the Impact of These Excipients on Aggregation and Viscosity

2019 ◽  
Vol 16 (8) ◽  
pp. 3657-3664 ◽  
Author(s):  
Theresa Cloutier ◽  
Chaitanya Sudrik ◽  
Neil Mody ◽  
Hasige A. Sathish ◽  
Bernhardt L. Trout
2009 ◽  
Vol 113 (37) ◽  
pp. 12546-12554 ◽  
Author(s):  
Diwakar Shukla ◽  
Chetan Shinde ◽  
Bernhardt L. Trout

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 633
Author(s):  
Yeong Jun Kim ◽  
Ui Soon Jang ◽  
Sandrine M. Soh ◽  
Joo-Youn Lee ◽  
Hye-Ra Lee

A new variant of SARS-CoV-2 B.1.351 lineage (first found in South Africa) has been raising global concern due to its harboring of multiple mutations in the spike that potentially increase transmissibility and yield resistance to neutralizing antibodies. We here tested infectivity and neutralization efficiency of SARS-CoV-2 spike pseudoviruses bearing particular mutations of the receptor-binding domain (RBD) derived either from the Wuhan strains (referred to as D614G or with other sites) or the B.1.351 lineage (referred to as N501Y, K417N, and E484K). The three different pseudoviruses B.1.351 lineage related significantly increased infectivity compared with other mutants that indicated Wuhan strains. Interestingly, K417N and E484K mutations dramatically enhanced cell–cell fusion than N501Y even though their infectivity were similar, suggesting that K417N and E484K mutations harboring SARS-CoV-2 variant might be more transmissible than N501Y mutation containing SARS-CoV-2 variant. We also investigated the efficacy of two different monoclonal antibodies, Casirivimab and Imdevimab that neutralized SARS-CoV-2, against several kinds of pseudoviruses which indicated Wuhan or B.1.351 lineage. Remarkably, Imdevimab effectively neutralized B.1.351 lineage pseudoviruses containing N501Y, K417N, and E484K mutations, while Casirivimab partially affected them. Overall, our results underscore the importance of B.1.351 lineage SARS-CoV-2 in the viral spread and its implication for antibody efficacy.


Author(s):  
Marta Torres-Ferrús ◽  
Victor J. Gallardo ◽  
Alicia Alpuente ◽  
Edoardo Caronna ◽  
Eulalia Gine-Cipres ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Robert C. Kauffman ◽  
Oluwaseyi Adekunle ◽  
Hanyi Yu ◽  
Alice Cho ◽  
Lindsay E. Nyhoff ◽  
...  

ABSTRACT Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition. IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.


2020 ◽  
Author(s):  
Matthew L. Goodwin ◽  
Helen S. Webster ◽  
Hsuan-Yuan Wang ◽  
Jennifer A. Jenks ◽  
Cody S. Nelson ◽  
...  

AbstractHuman cytomegalovirus (HCMV) is the most common congenital infection, and the leading nongenetic cause of sensorineural hearing loss (SNHL) in newborns globally. A gB subunit vaccine administered with adjuvent MF59 (gB/MF59) is the most efficacious tested to-date, achieving 50% efficacy in preventing infection of HCMV-seronegative mothers. We recently discovered that gB/MF59 vaccination elicited primarily non-neutralizing antibody responses, that HCMV strains acquired by vaccinees more often included strains with gB genotypes that are distinct from the vaccine antigen, and that protection against HCMV acquisition correlated with ability of vaccine-elicited antibodies to bind to membrane associated gB. Thus, we hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on their epitope and genotype specificity as well as their ability to interact with membrane-associated gB. Twenty-four gB-specific monoclonal antibodies (mAbs) isolated from naturally HCMV-infected individuals were mapped for gB domain specificity by binding antibody multiplex assay (BAMA) and for genotype preference binding to membrane-associated gB presented on transfected cells. We defined their non-neutralizing functions including antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC). The isolated gB-specific non-neutralizing mAbs were primarily specific for Domain II and linear antigenic domain 2 site 2 (AD2). We observed variability in mAb gB genotype binding preference, with increased binding to gB genotypes 2 and 4. Functional studies identified two gB-specific mAbs that facilitate ADCP and have binding specificities of AD2 and Domain II. This investigation provides novel understanding on the impact of gB domain specificity and antigenic variability on gB-specific non-neutralizing antibody responses.ImportanceHCMV is the most common congenital infection worldwide, but development of a successful vaccine remains elusive. gB-specific non-neutralizing mAbs, represent a distinct anti-HCMV Ab subset implicated in the protection against primary infection during numerous phase-II gB/MF59 vaccine trials. By studying non-neutralizing gB-specific mAbs from naturally infected individuals, this study provides novel characterization of binding site specificity, genotypic preference, and effector cell functions mediated by mAbs elicited in natural infection. We found that a panel of twenty-four gB-specific non-neutralizing mAbs bind across multiple regions of the gB protein, traditionally through to be targeted by neutralizing mAbs only, and bind differently to gB depending if the protein is soluble versus embedded in a membrane. This investigation provides novel insight into the gB-specific binding characteristics and effector cell functions mediated by non-neutralizing gB-specific mAbs elicited through natural infection, providing new endpoints for future vaccine development.


2020 ◽  
Vol 9 (12) ◽  
pp. 4030
Author(s):  
Ana-Maria Teodora Domșa ◽  
Raluca Lupușoru ◽  
Dan Gheban ◽  
Alexandra Buruiană-Simic ◽  
Bogdan Alexandru Gheban ◽  
...  

Background: The updated model for the mechanism of gastric carcinogenesis demonstrates that Helicobacter pylori (H. pylori) is a risk factor in every step of the process. The expression of certain gastric mucins is altered by H. pylori infection in adult patients. The aim of our research was to assess the impact of H. pylori infection on the expression of secretory mucins in the pediatric antral mucosa. Methods: Slides were stained with monoclonal antibodies for MUC5AC, MUC6 and MUC2, digitalized and scored using both a semiquantitative and a quantitative approach. Results: The expression of MUC5AC was significantly lower in infected children. Also, MUC2 expression was more pronounced in infected children. MUC6 expression did not differentiate between infected and noninfected children. Additionally, the presence of chronic inflammation significantly altered the expression of MUC6 and MUC2. The expression of MUC6 was significantly higher in patients with gastric atrophy. Conclusion: The minor differences in mucin expression at distinct ages might stem from different H. pylori exposure periods. Further research is needed to determine the particular patterns of expression according to age and to evaluate the effects of the interaction between H. pylori and mucins in the progression of the gastric carcinogenesis cascade.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Jin Gao ◽  
Laura Couzens ◽  
David F. Burke ◽  
Hongquan Wan ◽  
Patrick Wilson ◽  
...  

ABSTRACTThe effectiveness of influenza vaccines against circulating A(H1N1)pdm09 viruses was modest for several seasons despite the absence of antigenic drift of hemagglutinin (HA), the primary vaccine component. Since antibodies against HA and neuraminidase (NA) contribute independently to protection against disease, antigenic changes in NA may allow A(H1N1)pdm09 viruses to escape from vaccine-induced immunity. In this study, analysis of the specificities of human NA-specific monoclonal antibodies identified antigenic sites that have changed over time. The impact of these differences onin vitroinhibition of enzyme activity was not evident for polyclonal antisera until viruses emerged in 2013 without a predicted glycosylation site at amino acid 386 in NA. Phylogenetic and antigenic cartography demonstrated significant antigenic changes that in most cases aligned with genetic differences. Typical of NA drift, the antigenic difference is observed in one direction, with antibodies against conserved antigenic domains in A/California/7/2009 (CA/09) continuing to inhibit NA of recent A(H1N1)pdm09 viruses reasonably well. However, ferret CA/09-specific antiserum that inhibited the NA of A/Michigan/45/2015 (MI/15) very wellin vitro, protected mice against lethal MI/15 infection poorly. These data show that antiserum against the homologous antigen is most effective and suggest the antigenic properties of NA should not be overlooked when selecting viruses for vaccine production.IMPORTANCEThe effectiveness of seasonal influenza vaccines against circulating A(H1N1)pdm09 viruses has been modest in recent years, despite the absence of antigenic drift of HA, the primary vaccine component. Human monoclonal antibodies identified antigenic sites in NA that changed early after the new pandemic virus emerged. The reactivity of ferret antisera demonstrated antigenic drift of A(H1N1)pdm09 NA from 2013 onward. Passive transfer of serum raised against A/California/7/2009 was less effective than ferret serum against the homologous virus in protecting mice against a virus with the NA of more recent virus, A/Michigan/45/2015. Given the long-standing observation that NA-inhibiting antibodies are associated with resistance against disease in humans, these data demonstrate the importance of evaluating NA drift and suggest that vaccine effectiveness might be improved by selecting viruses for vaccine production that have NAs antigenically similar to those of circulating influenza viruses.


1992 ◽  
Vol 7 (3) ◽  
pp. 198-202 ◽  
Author(s):  
S. Lastoria ◽  
C. Caracò ◽  
E. Vergara ◽  
L. Castelli ◽  
M. Salvatore

Localization of gastrointestinal tumors by means of labeled monoclonal antibodies is a new, sensitive and suitable technique currently used in several centers. Encouraging results have been documented with several monoclonal antibodies by different authors. This article reviews our experience with radioimmunoscintigraphy in 59 patients with colorectal cancer in follow-up, using 131I and 111In labeled B72.3, and in 16 patients with primary gastrointestinal tumors using 99mTc anti-CEA monoclonal antibody (type F023C5). The sensitivity of both B72.3 and anti-CEA was greater than 70% either for primary tumors and abdominal recurrences or distant metastases except hepatic ones. A significant gradient in antibody uptake was measured on surgical biopsies between tumors and normal tissues allowing a good in vivo contrast for gamma detection. We have defined the impact of some factors affecting in vivo tumor targeting. In fact, pharmacodynamics of MAbs, percentage of injected dose bound to tissues were measured, and in particular antigenic content in tumor nodules was quantified. Furthermore, the results of RIS were compared to those obtained by CT and other imaging modalities.


2019 ◽  
Vol 294 (51) ◽  
pp. 19616-19634 ◽  
Author(s):  
Shalom A. Gurjar ◽  
Jun X. Wheeler ◽  
Meenu Wadhwa ◽  
Robin Thorpe ◽  
Ian Kimber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document