scholarly journals Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon

Nano Letters ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 3731-3737 ◽  
Author(s):  
Dingchang Lin ◽  
Yayuan Liu ◽  
Wei Chen ◽  
Guangmin Zhou ◽  
Kai Liu ◽  
...  
Author(s):  
Tomáš Czakoj ◽  
Evžen Losa

Three-dimensional Monte Carlo code KENO-VI of SCALE-6.2.2 code system was applied for criticality calculation of the LR-0 reactor core. A central module placed in the center of the core was filled by graphite, lithium fluoride-beryllium fluoride (FLIBE), and lithium fluoride-sodium fluoride (FLINA) compounds. The multiplication factor was obtained for all cases using both ENDF/B-VII.0 and ENDF/B-VII.1 nuclear data libraries. Obtained results were compared with benchmark calculations in the MCNP6 using ENDF/B-VII.0 library. The results of KENO-VI calculations are found to be in good agreement with results obtained by the MCNP6. The discrepancies are typically within tens of pcm excluding the case with the FLINA filling. Sensitivities and uncertainties of the reference case with no filling were determined by a continuos-energy version of the TSUNAMI sequence of SCALE-6.2.2. The obtained uncertainty in multiplication factor due to the uncertainties in nuclear data is about 650 pcm with ENDF/B-VII.1.


2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Takashi Kono ◽  
Masaaki Kakoki ◽  
Tomoki Yoshikawa ◽  
Xiaoxiao Wang ◽  
Kazuki Sumida ◽  
...  

Author(s):  
Hao-Chun Zhang ◽  
Yan-Qiang Wei ◽  
Cheng-Shuai Su ◽  
Gong-Nan Xie ◽  
Giulio Lorenzini

With the rapid development of the supersonic aircraft technology, the aircraft Mach number continues increasing, but on the other hand, the working condition becomes progressively poor. The photonic crystals (PCs) material could reflect the energy of the thermal radiation effectively and prevent heat transferring into the substrate due to its low thermal conductivity. Consequently, the PCs material could be applied to thermal protection for the supersonic aircraft. In this paper, the aircraft state of Mach 5 is set as the target operating condition, and the PC thermal protection ability is simulated by the method of computational fluid dynamics. Based on the theory of the electromagnetics, the characteristics of the photonic band gaps for three-dimensional PCs are calculated and the effects of PCs' medium radius, refractive index, and lattice constant are fully taken into account. For the three-dimensional diamond PCs' structure, two major categories and totally five optimized design schemes are proposed, through combining the condition of supersonic aircraft aerodynamic heating. Results show that the temperature is reduced by 948.4 K when the heat passes through thermal protection layer and reduced by 930.4 K when the heat passes through PC layer. By the method of “coupled optimization strategy (COS),” the energy density which enters into substrate material would decrease by 7.99%. In conclusion, the thermal protection capacity for supersonic aircraft could be effectively improved by using the PCs.


2020 ◽  
Vol 0 (0) ◽  
pp. 2008082-0
Author(s):  
Zhida Wang ◽  
Yuancheng Feng ◽  
Songtao Lu ◽  
Rui Wang ◽  
Wei Qin ◽  
...  

1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document