Microwave Atmospheric Plasma: A Versatile and Fast Way to Confer Antimicrobial Activity toward Direct Chitosan Immobilization onto Poly(lactic acid) Substrate

Author(s):  
Xavier Carette ◽  
Rosica Mincheva ◽  
Morgane Herbin ◽  
Paloma Cabecas Segura ◽  
Ruddy Wattiez ◽  
...  
2014 ◽  
Vol 884-885 ◽  
pp. 481-484 ◽  
Author(s):  
Yan Wu ◽  
Ming Wei Yuan ◽  
Ji Yi Yang ◽  
Yu Yue Qin ◽  
Ming Long Yuan ◽  
...  

Thymol (TH), which has antimicrobial effect on many food pathogens, was incorporated as antimicrobial agent into composite poly (lactic acid)/poly (trimethylene carbonate)(PLA-PTMC) films. Antimicrobial active films based on PLA-PTMC were prepared by incorporating thymol at five different concentrations: 0, 3, 6, 9 and 12 %(w/w). The mechanical characterization, water vapor permeability (WVP), and antimicrobial activity of all formulations composite film were carried out. A decrease in elastic modulus was obtained for the active composite film compared with neat PLA-PTMC film. The presence of thymol decreased water vapor permeability, with a significant antimicrobial activity. Antimicrobial activities of films were tested against Escherichia coli, Staphylococcus aurous, Listeria, Bacillus subtilis, and Salmonella. Increasing amount of the thymol in the film caused a significant increase in inhibitory zones. These results suggest that thymol incorporated PLA-PTMC films have a prospectively potential in antimicrobial food packaging.


2015 ◽  
Vol 48 ◽  
pp. 372-377 ◽  
Author(s):  
Roberta F. Bonan ◽  
Paulo R.F. Bonan ◽  
André U.D. Batista ◽  
Fábio C. Sampaio ◽  
Allan J.R. Albuquerque ◽  
...  

2021 ◽  
Vol 10 (9) ◽  
pp. e50010916964
Author(s):  
Leticia Riboldi Cavalli ◽  
Jalma Maria Klein ◽  
Ivana Greice Sandri ◽  
Rosmary Brandalise

This work focused on the development of biodegradable active packaging with poly(lactic acid) (PLA), poly(ethylene-co-vinyl acetate) (EVA), polyethylene glycol (PEG) and chitosan (QUI) blends. It investigated thermal and mechanical morphological characteristics of the blends, as the same time, the antifungal activity of the packaging. To assess the antimicrobial activity of the PLA/EVA/PEG/QUI blends, the samples were inserted between slices of bread with no preservative to the evaluation of their shelf life. By comparing between PLA/EVA/PEG, PLA/EVA/PEG/QUI blends and neat PLA was possible to evidence the partial miscibility, decreased glass transition temperature (Tg) by incorporating PEG into the blends, a decrease in flexural strength of 71% and elasticity modulus of 80.4% to PLA/EVA/PEG/2.5QUI blend, as well as an increase in elongation at break of 153% and 392% to impact toughness. A similar behavior was observed to PLA/EVA/20PEG and PLA/EVA/PEG/5.0QUI. The QUI-containing film among the bread slices has also influenced the water activity reduction, and reduced about 35% in the count of molds and yeasts in the slices of bread. Chitosan in mixtures with PLA/EVA/PEG showed potential as a natural antifungal agent in bakery packaging.


2014 ◽  
Vol 900 ◽  
pp. 320-323
Author(s):  
Ming Wei Yuan ◽  
Yan Wu ◽  
Yu Yue Qin ◽  
Ming Long Yuan ◽  
Hong Li Li

In this work a preliminary study on the physical properties and antimicrobial activity of environmentally friendly active films to be produced is presented. Chitosan (CH), which has antimicrobial effect on many food pathogens, was coated as antimicrobial agent into composite poly (lactic acid)/poly (ε-caprolactone)(PLA-PCL) films. Antimicrobial active films based on PLA-PCL were prepared by coating five different chitosan concentrations: 0, 2, 4, 6 and 8 %(w/w). The mechanical characterization, water vapor permeability (WVP), and antimicrobial activity of composite PLA-PCL film coating with chitosan were carried out. The mechanical characterization, water vapor permeability of composite PLA-PCL films coating with chitosan was uninfluenced. Antimicrobial activities of films were tested against Staphylococcus aurous, Escherichia coli, Bacillus subtilis, Listeria, Salmonella. The antimicrobial activity of films were significantly increase with the chitosan concentration. The results of this work suggest that chitosan coated composite PLA-PCL films have a prospectively potential in antimicrobial activity food packaging.


2011 ◽  
Vol 131 (5) ◽  
pp. 395-400 ◽  
Author(s):  
Toru Oi ◽  
Katsuyoshi Shinyama ◽  
Shigetaka Fujita

Sign in / Sign up

Export Citation Format

Share Document