Highly Flexible Artificial Synapses from SiO2-Based Conductive Bridge Memristors and Pt Nanoparticles through a Crack Suppression Technique

Author(s):  
Charalampos Papakonstantinopoulos ◽  
Panagiotis Bousoulas ◽  
Menelaos Tsigkourakos ◽  
Dionisis Sakellaropoulos ◽  
Labrini Sygellou ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 306
Author(s):  
Panagiotis Bousoulas ◽  
Charalampos Papakonstantinopoulos ◽  
Stavros Kitsios ◽  
Konstantinos Moustakas ◽  
Georgios Ch. Sirakoulis ◽  
...  

The quick growth of information technology has necessitated the need for developing novel electronic devices capable of performing novel neuromorphic computations with low power consumption and a high degree of accuracy. In order to achieve this goal, it is of vital importance to devise artificial neural networks with inherent capabilities of emulating various synaptic properties that play a key role in the learning procedures. Along these lines, we report here the direct impact of a dense layer of Pt nanoparticles that plays the role of the bottom electrode, on the manifestation of the bipolar switching effect within SiO2-based conductive bridge memories. Valuable insights regarding the influence of the thermal conductivity value of the bottom electrode on the conducting filament growth mechanism are provided through the application of a numerical model. The implementation of an intermediate switching transition slope during the SET transition permits the emulation of various artificial synaptic functionalities, such as short-term plasticity, including paired-pulsed facilitation and paired-pulse depression, long-term plasticity and four different types of spike-dependent plasticity. Our approach provides valuable insights toward the development of multifunctional synaptic elements that operate with low power consumption and exhibit biological-like behavior.


2015 ◽  
Vol 30 (9) ◽  
pp. 931 ◽  
Author(s):  
XU Ming-Li ◽  
DUAN Ben ◽  
ZHANG Ying-Jie ◽  
YANG Guo-Tao ◽  
DONG Peng ◽  
...  

2017 ◽  
Vol E100.B (10) ◽  
pp. 1959-1967
Author(s):  
Kouhei SUZUKI ◽  
Hideya SO ◽  
Daisuke GOTO ◽  
Yoshinori SUZUKI ◽  
Fumihiro YAMASHITA ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


Langmuir ◽  
2003 ◽  
Vol 19 (10) ◽  
pp. 4396-4401 ◽  
Author(s):  
Ji Zhu ◽  
Zoltan Kónya ◽  
Victor F. Puntes ◽  
Imre Kiricsi ◽  
C. X. Miao ◽  
...  
Keyword(s):  

RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42249-42255
Author(s):  
Xiaohan Wu ◽  
Ruijing Ge ◽  
Yifu Huang ◽  
Deji Akinwande ◽  
Jack C. Lee

Constant voltage and current stress were applied on MoS2 resistive switching devices, showing unique behaviors explained by a modified conductive-bridge-like model.


Nano Energy ◽  
2021 ◽  
pp. 106221
Author(s):  
Lvhan Liang ◽  
Huihui Jin ◽  
Huang Zhou ◽  
Bingshuai Liu ◽  
Chenxi Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document