Antidelaminating, Thermally Stable, and Cost-Effective Flexible Kapton Platforms for Nitrate Sensors, Mercury Aptasensors, Protein Sensors, and p-Type Organic Thin-Film Transistors

Author(s):  
Li-Kai Lin ◽  
Jung-Ting Tsai ◽  
Susana Díaz-Amaya ◽  
Muhammed Ramazan Oduncu ◽  
Yifan Zhang ◽  
...  
2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2018 ◽  
Vol 83 (2) ◽  
pp. 20201 ◽  
Author(s):  
Yao Ni ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Hang Yu ◽  
Yanyun Li ◽  
...  

Organic thin film transistors (OTFTs) with silicon oxide (SiO2)/poly(4-vinylphenol) (PVP)/polymethylmethacrylate (PMMA) tri-layer structure (SPP) as dielectric layers have been fabricated. To verify the validity of such tri-layer structure, two different organic semiconductor materials such as p-type pentacene and n-type fluorinated copper phthalo–cyanine (F16CuPc) are both used for fabricating OTFTs. Comparing with the OTFTs even by using PMMA modification, the better interface quality existing between SPP dielectric and organic film leads a higher conductive efficiency for transport carriers in channel. And then the field effect carriers (hole in pentacene OTFTs and electron in F16CuPc OTFTs) mobilities are both increased obviously. Our results show the SPP dielectric structure can be widely used to improve performance of OTFTs.


COSMOS ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 59-77
Author(s):  
YUNING LI ◽  
BENG S. ONG

Organic thin film transistors (OTFTs) are promising candidates as alternatives to silicon TFTs for applications where light weight, large area and flexibility are required. OTFTs have shown potential for cost effective fabrication using solution deposition techniques under mild conditions. However, two major issues must be addressed prior to the commercialization of OTFT-based electronics: (i) low charge mobilities and (ii) insufficient air stability. This article reviews recent progress in the design and development of thiophene-based polymer semiconductors as channel materials for OTFTs. To date, both high performance p-type and n-type thiophene-based polymers with benchmark charge carrier mobility of > 0.5 cm2 V-1 s-1 have been archived, which bring printed OTFTs one step closer to commercialization.


2017 ◽  
Vol 43 ◽  
pp. 105-111 ◽  
Author(s):  
Yang Zhao ◽  
Lijia Yan ◽  
Imran Murtaza ◽  
Xiao Liang ◽  
Hong Meng ◽  
...  

2015 ◽  
Vol 36 (4) ◽  
pp. 390-392 ◽  
Author(s):  
Gino Giusi ◽  
Orazio Giordano ◽  
Graziella Scandurra ◽  
Sabrina Calvi ◽  
Guglielmo Fortunato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document