Pentagalloyl Glucose-Laden Poly(lactide-co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model

Author(s):  
Frances Arnold ◽  
Nicolas Muzzio ◽  
Sourav S. Patnaik ◽  
Ender A. Finol ◽  
Gabriela Romero
2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Abulaihaiti Maitiseyiti ◽  
Hongbo Ci ◽  
Qingbo Fang ◽  
Sheng Guan ◽  
Alimujiang Shawuti ◽  
...  

Objective. Long noncoding RNAs (lncRNAs) have emerged as critical molecular regulators in various diseases. However, the potential regulatory role of lncRNAs in the pathogenesis of abdominal aortic aneurysm (AAA) remains elusive. The aim of this study was to identify crucial lncRNAs associated with human AAA by comparing the lncRNA and mRNA expression profiles of patients with AAA with those of control individuals. Materials and Methods. The expression profiles of lncRNAs and mRNAs were analyzed in five dilated aortic samples from AAA patients and three normal aortic samples from control individuals using microarray technology. Functional annotation of the screened lncRNAs based on the differentially expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results. Microarray results revealed 2046 lncRNAs and 1363 mRNAs. Functional enrichment analysis showed that the mRNAs significantly associated with AAA were enriched in the NOD-like receptor (NLR) and nuclear factor kappa-B (NF-κB) signaling pathways and in cell adhesion molecules (CAMs), which are closely associated with pathophysiological changes in AAA. The lncRNAs identified using microarray analysis were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis with 12 versus 11 aortic samples. Finally, three key lncRNAs (ENST00000566954, ENST00000580897, and T181556) were confirmed using strict validation. A coding-noncoding coexpression (CNC) network and a competing endogenous RNA (ceRNA) network were constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs. Conclusions. Our microarray profiling analysis and validation of significantly expressed lncRNAs between patients with AAA and control group individuals may provide new diagnostic biomarkers for AAA. The underlying regulatory mechanisms of the confirmed lncRNAs in AAA pathogenesis need to be determined using in vitro and in vivo experiments.


2020 ◽  
Vol 21 (17) ◽  
pp. 6334
Author(s):  
Rijan Gurung ◽  
Andrew Mark Choong ◽  
Chin Cheng Woo ◽  
Roger Foo ◽  
Vitaly Sorokin

Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.


2007 ◽  
Vol 40 (2) ◽  
pp. 289-295 ◽  
Author(s):  
J.W. Hinnen ◽  
D.J. Rixen ◽  
O.H.J. Koning ◽  
J.H. van Bockel ◽  
J.F. Hamming

2014 ◽  
Vol 126 (9) ◽  
pp. 671-678 ◽  
Author(s):  
Aya Watanabe ◽  
Toshihiro Ichiki ◽  
Chikahiro Sankoda ◽  
Yusuke Takahara ◽  
Jiro Ikeda ◽  
...  

Inhibition of prolyl hydroxylase domain protein by cobalt chloride suppressed calcium chloride-induced abdominal aneurysm formation in mice.


2015 ◽  
Vol 62 (6) ◽  
pp. 1607-1614.e2 ◽  
Author(s):  
Zhenjie Liu ◽  
Qiwei Wang ◽  
Jun Ren ◽  
Carmel Rebecca Assa ◽  
Stephanie Morgan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document