extracellular matrix remodelling
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Alberto Aimo ◽  
Oriol Iborra-Egea ◽  
Nicola Martini ◽  
Carolina Galvez-Monton ◽  
Silvia Burchielli ◽  
...  

Abstract Aims Left ventricular (LV) remodelling after myocardial infarction (MI) is promoted by an intense fibrotic response, which could be targeted by an anti-fibrotic drug such as pirfenidone. Methods and results We explored the relationship between protein modulation by pirfenidone and post-MI remodelling, based on publicly available molecular information and transcriptomic data from a swine model of MI. We also compared the effects of pirfenidone and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEi/ARB), mineralocorticoid receptor blockers (MRA) and beta-blockers. We identified six causative motives of post-MI remodelling (cardiomyocyte cell death, impaired myocyte contractility, extracellular matrix remodelling and fibrosis, hypertrophy, renin–angiotensin–aldosterone system activation, and inflammation), 4 pirfenidone targets and 21 bioflags (indirect effectors). When considering both targets and bioflags, pirfenidone showed a broad relationship encompassing all six motives. p38γ-MAPK12 blockade inhibits cardiomyocyte apoptosis, cardiomyocyte hypertrophy and inflammation. Furthermore, pirfenidone can modulate extracellular matrix remodelling and cardiac fibrosis by targeting the TGFβ1-SMAD2/3 pathway and other effector proteins such as matrix metalloproteases 2 and 14, PDGFA/B, and IGF1, which promote myocardial fibrosis, cardiomyocyte hypertrophy and impaired contractility. All the gold standard drugs were found to be important for specific clinical motives, but pirfenidone had a more widespread action on the molecular pathways active in the post-MI setting. Conclusions A bioinformatic approach allowed to identify several possible mechanisms of action of pirfenidone with beneficial effects in the post-MI LV remodelling, and suggests additional effects over guideline-recommended therapies. These findings support clinical studies evaluating the beneficial effects of pirfenidone in patients with MI.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 546
Author(s):  
Rémi Cousin ◽  
Hugo Groult ◽  
Chanez Manseur ◽  
Romain Ferru-Clément ◽  
Mario Gani ◽  
...  

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE “modulator” capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


2021 ◽  
Vol 7 (9) ◽  
pp. 729
Author(s):  
Cesar Roncero ◽  
Rubén Celador ◽  
Noelia Sánchez ◽  
Patricia García ◽  
Yolanda Sánchez

Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis, fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities in the assembly of the septa in both yeasts, there are significant mechanistic differences, including the relationship of this process with the cell integrity signalling pathways.


Author(s):  
Shireen Attaran ◽  
John J. Skoko ◽  
Barbara L. Hopkins ◽  
Megan K. Wright ◽  
Laurel E. Wood ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kasun Godakumara ◽  
James Ord ◽  
Freddy Lättekivi ◽  
Keerthie Dissanayake ◽  
Janeli Viil ◽  
...  

Abstract Background The period of time when the embryo and the endometrium undergo significant morphological alterations to facilitate a successful implantation—known as “window of implantation”—is a critical moment in human reproduction. Embryo and the endometrium communicate extensively during this period, and lipid bilayer bound nanoscale extracellular vesicles (EVs) are purported to be integral to this communication. Methods To investigate the nature of the EV-mediated embryo-maternal communication, we have supplemented trophoblast analogue spheroid (JAr) derived EVs to an endometrial analogue (RL 95–2) cell layer and characterized the transcriptomic alterations using RNA sequencing. EVs derived from non-trophoblast cells (HEK293) were used as a negative control. The cargo of the EVs were also investigated through mRNA and miRNA sequencing. Results Trophoblast spheroid derived EVs induced drastic transcriptomic alterations in the endometrial cells while the non-trophoblast cell derived EVs failed to induce such changes demonstrating functional specificity in terms of EV origin. Through gene set enrichment analysis (GSEA), we found that the response in endometrial cells was focused on extracellular matrix remodelling and G protein-coupled receptors’ signalling, both of which are of known functional relevance to endometrial receptivity. Approximately 9% of genes downregulated in endometrial cells were high-confidence predicted targets of miRNAs detected exclusively in trophoblast analogue-derived EVs, suggesting that only a small proportion of reduced expression in endometrial cells can be attributed directly to gene silencing by miRNAs carried as cargo in the EVs. Conclusion Our study reveals that trophoblast derived EVs have the ability to modify the endometrial gene expression, potentially with functional importance for embryo-maternal communication during implantation, although the exact underlying signalling mechanisms remain to be elucidated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gil Lola Oreff ◽  
Michele Fenu ◽  
Claus Vogl ◽  
Iris Ribitsch ◽  
Florien Jenner

AbstractFor research on tendon injury, many different animal models are utilized; however, the extent to which these species simulate the clinical condition and disease pathophysiology has not yet been critically evaluated. Considering the importance of inflammation in tendon disease, this study compared the cellular and molecular features of inflammation in tenocytes of humans and four common model species (mouse, rat, sheep, and horse). While mouse and rat tenocytes most closely equalled human tenocytes’ low proliferation capacity and the negligible effect of inflammation on proliferation, the wound closure speed of humans was best approximated by rats and horses. The overall gene expression of human tenocytes was most similar to mice under healthy, to horses under transient and to sheep under constant inflammatory conditions. Humans were best matched by mice and horses in their tendon marker and collagen expression, by horses in extracellular matrix remodelling genes, and by rats in inflammatory mediators. As no single animal model perfectly replicates the clinical condition and sufficiently emulates human tenocytes, fit-for-purpose selection of the model species for each specific research question and combination of data from multiple species will be essential to optimize translational predictive validity.


Author(s):  
Aleksandra Augusciak-Duma ◽  
Karolina L. Stepien ◽  
Marta Lesiak ◽  
Ewa Gutmajster ◽  
Agnieszka Fus-Kujawa ◽  
...  

AbstractAbdominal aortic aneurysm refers to abnormal, asymmetric distension of the infrarenal aortic wall due to pathological remodelling of the extracellular matrix. The distribution of enzymes remodelling the extracellular matrix and their expression patterns in the affected tissue are largely unknown. The goal of this work was to investigate the expression profiles of 20 selected genes coding for metalloproteinases and their inhibitors in the proximal to the distal direction of the abdominal aortic aneurysm. RNA samples were purified from four lengthwise fragments of aneurysm and border tissue obtained from 29 patients. The quantities of selected mRNAs were determined by real-time PCR to reveal the expression patterns. The genes of interest encode collagenases (MMP1, MMP8, MMP13), gelatinases (MMP2, MMP9), stromelysins (MMP3, MMP7, MMP10, MMP11, MMP12), membrane-type MMPs (MMP14, MMP15, MMP16), tissue inhibitors of metalloproteinases (TIMP1, TIMP2, TIMP3, TIMP4), and ADAMTS proteinases (ADAMTS1, ADAMTS8, and ADAMTS13). It was found that MMP, TIMP, and ADAMTS are expressed in all parts of the aneurysm with different patterns. A developed aneurysm has such a disturbed expression of the main participants in extracellular matrix remodelling that it is difficult to infer the causes of the disorder development. MMP12 secreted by macrophages at the onset of inflammation may initiate extracellular matrix remodelling, which, if not controlled, initiates a feedback loop leading to aneurysm formation.


Sign in / Sign up

Export Citation Format

Share Document