Synthesis of Magnetite–Graphene Oxide-Layered Double Hydroxide Composites and Applications for the Removal of Pb(II) and 2,4-Dichlorophenoxyacetic Acid from Aqueous Solutions

2015 ◽  
Vol 7 (13) ◽  
pp. 7251-7263 ◽  
Author(s):  
Fengrong Zhang ◽  
Yawen Song ◽  
Shue Song ◽  
Renjie Zhang ◽  
Wanguo Hou
RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 856-866 ◽  
Author(s):  
Bo Zhang ◽  
Shiling Yuan ◽  
Dejun Sun ◽  
Yujiang Li ◽  
Tao Wu

The core–shell CMS@LDH composites were successfully synthesized and exhibited an excellent adsorption performance for 2,4-D.


2015 ◽  
Vol 1 (2) ◽  
pp. 36-41
Author(s):  
Laura Cocheci ◽  
◽  
Ancuta-Corina Marcu ◽  
Paul Barvinschi ◽  
Aniela Pop

CrystEngComm ◽  
2022 ◽  
Author(s):  
Meng Ya Yang ◽  
Rong Zhao ◽  
Yi Liu ◽  
Hua Lin

In this work, high efficient electrocatalyst Fe-Ni2P/N-GO with hierarchical structure was developed through phosphating NiFe-based layered double hydroxide (LDH) supported by N-doped graphene oxide (GO), which was assembled by the...


2019 ◽  
Vol 107 (4) ◽  
pp. 299-309
Author(s):  
Shuqi Yu ◽  
Xiangxue Wang ◽  
Shunyan Ning ◽  
Zhongshan Chen ◽  
Xiangke Wang

Abstract The three-dimensional (3D) carbonaceous nanofiber and Ni-Al layered double hydroxide (CNF/LDH) nanocomposite was successfully prepared by a facile one-step hydrothermal methodology. Characterization of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), XRD, and Fourier transformed infrared spectroscopy (FTIR) provided a demonstration that the modified CNF/LDH nanocomposite possessed abundant functional groups, for instance, metal-oxygen surface bonding sites (Ni–O as well as Al–O) and free-metal surface bonding sites (C–O, C–O–C, as well as O–C=O). The elimination of representative radionuclide (i.e. U(VI)) on the CNF/LDH nanocomposite from aqueous solutions was explored as a key function of pH, ionic strength, contact time, reaction temperature as well as radionuclide preliminary concentrations with the use of the batch methodology. As revealed by the findings, the sorption of radionuclides on CNF/LDH nanocomposite adhered to the pseudo-second-order kinetic model as well as Langmuir model. The maximum elimination capacity of U(VI) amounted to be 0.7 mmol/g. The independent of ionic strength shed light on the fact that inner-sphere surface complexation mainly overpowered radionuclide uptake by the CNF/LDH nanocomposite, which was further verified through the combination of FTIR and XPS spectral analyses. The abovementioned analyses shed light on the fact that the CNF/LDH nanocomposite can be regarded as a latent material to preconcentration radionuclides for environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document