Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties

2015 ◽  
Vol 7 (35) ◽  
pp. 19781-19788 ◽  
Author(s):  
Thiruparasakthi Balakrishnan ◽  
Sadagopan Sathiyanarayanan ◽  
Sundar Mayavan
Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2919
Author(s):  
Shehu Lurwanu Ibrahim ◽  
Abubeker Hassen

Tannin has gained wider acceptance as a dietary supplement in contemporary animal nutrition investigations because of its potential to reduce enteric methane emission. However, a major drawback to dietary tannin intake is the bitter taste and instability in the gastrointestinal tract (GIT). The utilization of fats as coating materials will ensure appropriate masking of the tannin’s aversive taste and its delivery to the target site. The aims of this study were to encapsulate mimosa tannin with palm oil or sunflower oil, and to assess the microcapsules in terms of encapsulation efficiency, morphology, density, and in vitro release of tannin in media simulating the rumen (pH 5.6), abomasum (pH 2.9) and small intestine (pH 7.4). The microencapsulation of mimosa tannin in palm or sunflower oils was accomplished using a double emulsion technique. The results revealed that encapsulated mimosa tannins in palm oil (EMTP) and sunflower oil (EMTS) had high yields (59% vs. 58%) and encapsulation efficiencies (70% vs. 68%), respectively. Compared to unencapsulated mimosa tannin (UMT), the morphology showed that the encapsulated tannins were smaller in size and spherical in shape. The UMT had (p < 0.01) higher particle density (1.44 g/cm3) compared to 1.22 g/cm3 and 1.21 g/cm3 for the EMTS and EMTP, respectively. The proportion of tannins released by the UMT after 24 h in the rumen (94%), abomasum (92%) and small intestine (96%) simulated buffers, reduced (p < 0.01) to 24%, 21% and 19% for the EMTS and 18%, 20% and 16% for the EMTP in similar media and timeframe. The release kinetics for the encapsulated tannins was slow and steady, thus, best fitted by the Higuchi model while the UMT dissolved quickly, hence, only fitted to a First order model. Sequential tannin release also indicated that the EMTS and EMTP were stable across the GIT. It was concluded that the microencapsulation of mimosa tannin in palm or sunflower oils stabilized tannins release in the GIT simulated buffers with the potential to modify rumen fermentation. Further studies should be conducted on the palm and sunflower oils microcapsules’ lipid stability, fatty acid transfer rate in the GIT and antioxidant properties of the encapsulated tannins.


2018 ◽  
Vol 60 (3) ◽  
pp. 387-394 ◽  
Author(s):  
Tarek S. Jamil ◽  
A. M. Shaban ◽  
M. S. Shalaby ◽  
E. R. Souaya ◽  
M. R. Sedra ◽  
...  

2017 ◽  
Vol 87 (3-4) ◽  
pp. 179-190
Author(s):  
Amel Kanane ◽  
Fayrouz Rouaki ◽  
Mohamed Brahim Errahmani ◽  
Abdenour Laraba ◽  
Hayet Mesbah ◽  
...  

Abstract. The aim of this study is to evaluate the effect of α-tocopherol supplementation at two doses (600 and 1200 mg × kg–1) on kidney antioxidant status and the histopathological changes in Wistar rats after 12 weeks of exposure at different diets. Forty rats has been divided into 4 groups of 10 rats each, the control group received basal diet with 5 % fresh sunflower oil (FSO), the second group: 5 % oxidized sunflower oil (OSO), the third group: 5 % OSO supplemented with 600 mg × kg–1 α-tocopherol and the fourth group: 5 % OSO supplemented with 1200 mg × kg–1 α-tocopherol. In OSO groups, the results showed highly significant increases of LPO (from 31.3 ± 0.9 to 53.8 ± 1.2 nmol of MDA formed/min/mg protein, p < 0.0001) with a significant decrease (p < = 0.001) of the antioxidant enzymatic activities (CAT, SOD, GPX, GR and G6PDH), body weight (339 ± 9 to 290 ± 3 g) and α-tocopherol levels (13.6 ± 0.6 to 6.5 ± 0.4 μg/mg protein). In OSO groups with 600 mg × kg–1 α-tocopherol, an antioxidant effect was found, reflected by a return of the parameters to values similar to those of the control group. However, higher doses of α-tocopherol (1200 mg × kg–1) induced a depletion of antioxidant status, α-tocopherol levels (6.0 ± 0.3 μg/mg protein, p < 0.001) and a very highly significant rise (p < 0.0001) of LPO content (54.86 ± 0.01 nmol of MDA formed/min/mg protein). The kidney tissues also showed changes in glomerular, severe inflammatory cells infiltration, and formation of novel vessels. So, we can conclude that the oxidative stress is attenuated by a moderate administration of 600 mg × kg–1 α-tocopherol, while a pro-oxidant effect occurs at 1200 mg × kg–1 α-tocopherol.


1992 ◽  
Vol 67 (03) ◽  
pp. 352-356 ◽  
Author(s):  
Marja Mutanen ◽  
Riitta Freese ◽  
Liisa M Valsta ◽  
Irma Ahola ◽  
Antti Ahlström

SummaryIn this highly controlled trial, 26 normolipidemic men (average age 28 years, range 18 to 60) were fed a baseline diet high in milk fat (MF) (fat 36% of energy, saturates 19%, monounsaturates 11%, polyunsaturates 4%), followed by a diet high in sunflower oil (SO) (fat 38% of energy, saturates 13%, monounsaturates 10%, polyunsaturates 13%) and another diet high in low erucic-acid rapeseed oil (RO) (fat 38% of energy, saturates 12%, monounsaturates 16%, polyunsaturates 8%). All diets were mixed natural diets with the same cholesterol contents. The baseline milk fat diet was given for 14 days and the oil diets for 24 days in a blind cross-over design. The platelet in vitro aggregation (slope %/min) induced by 1, 2 and 3 pM ADP and collagen (25 pg/ml PRP) was highly significantly (p <0.001) increased after both oil diets when compared with the results from the milk fat diet. The aggregation pattern determined by threshold collagen concentration confirmed increased collagen sensitivity of the platelets after the rapeseed oil diet (p <0.001). The enhancement of platelet aggregation was associated with increased in vitro platelet thromboxane production after the oil diets vs. the milk fat diet (p <0.05 after the sunflower oil diet and p <0.001 after the rapeseed oil diet).


2020 ◽  
Author(s):  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document