scholarly journals Characterization, Density and In Vitro Controlled Release Properties of Mimosa (Acacia mearnsii) Tannin Encapsulated in Palm and Sunflower Oils

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2919
Author(s):  
Shehu Lurwanu Ibrahim ◽  
Abubeker Hassen

Tannin has gained wider acceptance as a dietary supplement in contemporary animal nutrition investigations because of its potential to reduce enteric methane emission. However, a major drawback to dietary tannin intake is the bitter taste and instability in the gastrointestinal tract (GIT). The utilization of fats as coating materials will ensure appropriate masking of the tannin’s aversive taste and its delivery to the target site. The aims of this study were to encapsulate mimosa tannin with palm oil or sunflower oil, and to assess the microcapsules in terms of encapsulation efficiency, morphology, density, and in vitro release of tannin in media simulating the rumen (pH 5.6), abomasum (pH 2.9) and small intestine (pH 7.4). The microencapsulation of mimosa tannin in palm or sunflower oils was accomplished using a double emulsion technique. The results revealed that encapsulated mimosa tannins in palm oil (EMTP) and sunflower oil (EMTS) had high yields (59% vs. 58%) and encapsulation efficiencies (70% vs. 68%), respectively. Compared to unencapsulated mimosa tannin (UMT), the morphology showed that the encapsulated tannins were smaller in size and spherical in shape. The UMT had (p < 0.01) higher particle density (1.44 g/cm3) compared to 1.22 g/cm3 and 1.21 g/cm3 for the EMTS and EMTP, respectively. The proportion of tannins released by the UMT after 24 h in the rumen (94%), abomasum (92%) and small intestine (96%) simulated buffers, reduced (p < 0.01) to 24%, 21% and 19% for the EMTS and 18%, 20% and 16% for the EMTP in similar media and timeframe. The release kinetics for the encapsulated tannins was slow and steady, thus, best fitted by the Higuchi model while the UMT dissolved quickly, hence, only fitted to a First order model. Sequential tannin release also indicated that the EMTS and EMTP were stable across the GIT. It was concluded that the microencapsulation of mimosa tannin in palm or sunflower oils stabilized tannins release in the GIT simulated buffers with the potential to modify rumen fermentation. Further studies should be conducted on the palm and sunflower oils microcapsules’ lipid stability, fatty acid transfer rate in the GIT and antioxidant properties of the encapsulated tannins.

2021 ◽  
Author(s):  
Tuba Ersen Dudu ◽  
Duygu Alpaslan ◽  
Nahit Aktas

Abstract In this study, it was aimed to investigate the synthesis, characterization and drug release behaviors of organohydrogels containing pH-sensitive Agar (A), Glycerol (G), Sweet Almond oil (SAO). Organohydrogels, which contained Agar, Glycerol and different amounts of Sweet Almond oil, were synthesized via the free-radical polymerization reaction with emulsion technique using glutaraldehyde or methylene bis acrylamide crosslinkers. Then, the degree of swelling, bond structures, blood compatibility and antioxidant properties of the synthesized organohydrogels were examined. In addition, Organohydrogels which loaded with Ceftriaxone (antibiotic) and Oxaliplatin (an anti-cancer agent), were synthesized with the same polymerization reaction and release kinetics were investigated. In vitro release studies were performed at media similar pH to gastric fluid (pH 2), skin surface (pH 5.5), blood fluid (pH 7.4) and intestinal fluid (pH 8), at 37° C. The effects on release of crosslinker type and sweet almond oil amount were investigated. Kinetic parameters were determined using release results and these results were applied to zero and first-order equations and Korsmeyer-Peppas and Higuchi equations. Diffusion exponential was calculated for drug diffusion of organohydrogels and values consistent with release results were found.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1655
Author(s):  
Zvezdelina Yaneva ◽  
Donika Ivanova ◽  
Nikolay Popov

The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Biomaterials ◽  
1996 ◽  
Vol 17 (9) ◽  
pp. 941-949 ◽  
Author(s):  
Meltem Gökce ◽  
R.Fikret Akata ◽  
Menemşe Kiremitçi-Gümüşderelioǧlu

Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


Sign in / Sign up

Export Citation Format

Share Document