Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System

2019 ◽  
Vol 11 (10) ◽  
pp. 10328-10336 ◽  
Author(s):  
Biao Zhang ◽  
Wang Zhang ◽  
Zhiqian Zhang ◽  
Yuan-Fang Zhang ◽  
Hardik Hingorani ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3754
Author(s):  
Seokwoo Nam ◽  
Eujin Pei

Four-dimensional printing (4DP) is an approach of using Shape Memory Materials (SMMs) with additive manufacturing (AM) processes to produce printed parts that can deform over a determined amount of time. This research examines how Polylactic Acid (PLA), as a Shape Memory Polymer (SMP), can be programmed by manipulating the build parameters of material extrusion. In this research, a water bath experiment was used to show the results of the shape-recovery of bending and shape-recovery speed of the printed parts, according to the influence of the print pattern, infill density and recovery temperature (Tr). In terms of the influence of the print pattern, the ‘Quarter-cubic’ pattern with a 100% infill density showed the best recovery result; and the ‘Line’ pattern with a 20% infill density showed the worst recovery result. The ‘Cubic-subdivision’ pattern with a 20% infill density demonstrated the shortest recovery time; and the ‘Concentric’ pattern with a 100% infill density demonstrated the longest recovery time. The results also showed that a high temperature and high infill density provided better recovery, and a low temperature and low infill density resulted in poor recovery.


2020 ◽  
Vol 8 (11) ◽  
pp. 3193-3201 ◽  
Author(s):  
Kun Yan ◽  
Feiyang Xu ◽  
Chunyu Wang ◽  
Yingying Li ◽  
Yuanli Chen ◽  
...  

A universal, straightforward macroscale assembly technology has been presented for fabrication of polysaccharide-based multifunctional DN gels based on metal coordination chemistry.


Sign in / Sign up

Export Citation Format

Share Document