Control of Circular Photogalvanic Effect of Surface States in the Topological Insulator Bi2Te3 via Spin Injection

2020 ◽  
Vol 12 (15) ◽  
pp. 18091-18100 ◽  
Author(s):  
Jinling Yu ◽  
Lijia Xia ◽  
Kejing Zhu ◽  
Qinggao Pan ◽  
Xiaolin Zeng ◽  
...  
2014 ◽  
Vol 16 (6) ◽  
pp. 065016 ◽  
Author(s):  
K Miyamoto ◽  
T Okuda ◽  
M Nurmamat ◽  
M Nakatake ◽  
H Namatame ◽  
...  

Nano Letters ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 7878-7885 ◽  
Author(s):  
Jinling Yu ◽  
Xiaolin Zeng ◽  
Liguo Zhang ◽  
Ke He ◽  
Shuying Cheng ◽  
...  

2021 ◽  
Vol 7 (14) ◽  
pp. eabe5748
Author(s):  
X. Sun ◽  
G. Adamo ◽  
M. Eginligil ◽  
H. N. S. Krishnamoorthy ◽  
N. I. Zheludev ◽  
...  

One of the most notable manifestations of electronic properties of topological insulators is the dependence of the photocurrent direction on the helicity of circularly polarized optical excitation. The helicity-dependent photocurrents, underpinned by spin-momentum locking of surface Dirac electrons, are weak and easily overshadowed by bulk contributions. Here, we show that the chiral response can be enhanced by nanostructuring. The tight confinement of electromagnetic fields in the resonant nanostructure enhances the photoexcitation of spin-polarized surface states of topological insulator Bi1.5Sb0.5Te1.8Se1.2, leading to an 11-fold increase of the circular photogalvanic effect and a previously unobserved photocurrent dichroism (ρcirc = 0.87) at room temperature. The control of spin transport in topological materials by structural design is a previously unrecognized ability of metamaterials that bridges the gap between nanophotonics and spin electronics, providing opportunities for developing polarization-sensitive photodetectors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Hernando ◽  
Yuriko Baba ◽  
Elena Díaz ◽  
Francisco Domínguez-Adame

AbstractWe theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.


Vacuum ◽  
1995 ◽  
Vol 46 (5-6) ◽  
pp. 459-463 ◽  
Author(s):  
M Stȩślicka ◽  
R Kucharczyk ◽  
EH El Boudouti ◽  
B Djafari-Rouhani ◽  
ML Bah ◽  
...  

Nano Letters ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 980-984 ◽  
Author(s):  
Yinming Shao ◽  
Kirk W. Post ◽  
Jhih-Sheng Wu ◽  
Siyuan Dai ◽  
Alex J. Frenzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document