scholarly journals Electrical Actuation of Hydrophobic Bilayer Membranes of Reduced Graphene Oxide and Agar for Inducing Chemical Reactions in Microdroplets

2020 ◽  
Vol 3 (7) ◽  
pp. 6629-6635 ◽  
Author(s):  
Arindom Bikash Neog ◽  
Raj Kumar Gogoi ◽  
Trisha Dutta ◽  
Kalyan Raidongia
2020 ◽  
Author(s):  
Christos E. Athanasiou ◽  
Mok Yun Jin ◽  
Cristina Ramirez ◽  
Nitin P. Padture ◽  
Brian W. Sheldon

2020 ◽  
Vol 193 ◽  
pp. 108010
Author(s):  
Beom-Gon Cho ◽  
Shalik Ram Joshi ◽  
Jaekyo Lee ◽  
Young-Bin Park ◽  
Gun-Ho Kim

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4247 ◽  
Author(s):  
Rita Petrucci ◽  
Isabella Chiarotto ◽  
Leonardo Mattiello ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to – interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10−10 mol L−1 and 1.8 × 10−9 mol L−1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


Sign in / Sign up

Export Citation Format

Share Document