Inducing Microscale Structural Order in Phage Nanofilament Hydrogels with Globular Proteins

Author(s):  
Azadeh Peivandi ◽  
Kyle Jackson ◽  
Lei Tian ◽  
Leon He ◽  
Ahmad Mahmood ◽  
...  
2021 ◽  
Author(s):  
Azadeh Peivandi ◽  
Kyle Jackson ◽  
Lei Tian ◽  
Leon He ◽  
Ahmad Mahmood ◽  
...  

Biological hydrogels play important physiological roles in the body. These hydrogels often contain ordered subdomains that provide mechanical toughness and other tissue-specific functionality. Filamentous bacteriophages are nanofilaments with a high aspect ratio that can self-assemble into liquid crystalline domains that could be designed to mimic ordered biological hydrogels and can thus find application in biomedical engineering. We have previously reported hydrogels of pure crosslinked liquid crystalline filamentous phage formed at very high concentrations exhibiting a tightly packed microstructure and high stiffness. In this work, we report a method for inducing self-assembly of filamentous phage into liquid crystalline hydrogels at concentrations that are several orders of magnitude below that of lyotropic liquid crystal formation, thus creating structural order, but a less densely packed hydrogel. Hybrid hydrogels of M13 phage and bovine serum albumin (0.25 w/v%) were formed and shown to adsorb up to 16 its weight in water. Neither component gelled on its own at the low concentrations used, suggesting synergistic action between the two components in forming the hydrogel. The hybrid hydrogels exhibited repetitive self-healing under physiological conditions and at room temperature, autofluorescence in three channels, and antibacterial activity towards <i>Escherichia coli</i> host cells. Furthermore, the hybrid hydrogels exhibited more than 2 higher ability to pack water compared to BSA-only hydrogels and 2 higher flexibility (lower compression modulus) compared to tightly packed M13-only hydrogels, suggesting that our method could be used to create hydrogels with tunable mechanical properties through the addition of globular proteins, while maintaining structural order at the microscale.


2021 ◽  
Author(s):  
Azadeh Peivandi ◽  
Kyle Jackson ◽  
Lei Tian ◽  
Leon He ◽  
Ahmad Mahmood ◽  
...  

Biological hydrogels play important physiological roles in the body. These hydrogels often contain ordered subdomains that provide mechanical toughness and other tissue-specific functionality. Filamentous bacteriophages are nanofilaments with a high aspect ratio that can self-assemble into liquid crystalline domains that could be designed to mimic ordered biological hydrogels and can thus find application in biomedical engineering. We have previously reported hydrogels of pure crosslinked liquid crystalline filamentous phage formed at very high concentrations exhibiting a tightly packed microstructure and high stiffness. In this work, we report a method for inducing self-assembly of filamentous phage into liquid crystalline hydrogels at concentrations that are several orders of magnitude below that of lyotropic liquid crystal formation, thus creating structural order, but a less densely packed hydrogel. Hybrid hydrogels of M13 phage and bovine serum albumin (0.25 w/v%) were formed and shown to adsorb up to 16 its weight in water. Neither component gelled on its own at the low concentrations used, suggesting synergistic action between the two components in forming the hydrogel. The hybrid hydrogels exhibited repetitive self-healing under physiological conditions and at room temperature, autofluorescence in three channels, and antibacterial activity towards <i>Escherichia coli</i> host cells. Furthermore, the hybrid hydrogels exhibited more than 2 higher ability to pack water compared to BSA-only hydrogels and 2 higher flexibility (lower compression modulus) compared to tightly packed M13-only hydrogels, suggesting that our method could be used to create hydrogels with tunable mechanical properties through the addition of globular proteins, while maintaining structural order at the microscale.


Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


2014 ◽  
Vol 14 (5) ◽  
pp. 630-639 ◽  
Author(s):  
Najet Mahmoudi ◽  
Cedric Gaillard ◽  
Alain Riaublanc ◽  
Francois Boue ◽  
Monique Axelos

2003 ◽  
Vol 85 (5) ◽  
pp. 3271-3278 ◽  
Author(s):  
Andrzej Kolinski ◽  
Piotr Klein ◽  
Piotr Romiszowski ◽  
Jeffrey Skolnick

ACS Photonics ◽  
2021 ◽  
Author(s):  
Aqeel Ahmed ◽  
Karla Banjac ◽  
Sachin S. Verlekar ◽  
Fernando P. Cometto ◽  
Magalí Lingenfelder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document