hydrodynamic stress
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 933 ◽  
Author(s):  
Vincent Bertin ◽  
Yacine Amarouchene ◽  
Elie Raphaël ◽  
Thomas Salez

The motion of an object within a viscous fluid and in the vicinity of a soft surface induces a hydrodynamic stress field that deforms the latter, thus modifying the boundary conditions of the flow. This results in elastohydrodynamic interactions experienced by the particle. Here, we derive a soft-lubrication model, in order to compute all the forces and torque applied on a rigid sphere that is free to translate and rotate near an elastic wall. We focus on the limit of small deformations of the surface with respect to the fluid-gap thickness, and perform a perturbation analysis in dimensionless compliance. The response is computed in the framework of linear elasticity, for planar elastic substrates in the limiting cases of thick and thin layers. The EHD forces are also obtained analytically using the Lorentz reciprocal theorem.


2021 ◽  
Author(s):  
Nikolai V Kouznetsov

The human immune system is compromised in microgravity (MG) conditions during an orbital flight and upon return to Earth. T cells are critical for the immune response and execute their functions via actin mediated immune cell-cell interactions that could be disturbed by MG conditions. Here, we have applied two rotational platforms to simulate MG conditions: fast rotating clinostat (CL) and random positioning machine (RPM) followed by global T cell transcriptome analysis using RNA sequencing. We demonstrate that the T cell transcriptome profile in response to simulated MG treatment was clearly distinguishable from the T cell transcriptome response to hydrodynamic stress (HS) induced by shear forces upon cell movement in cultural medium. Gene expression profiling of genes related to or involved in actin cytoskeleton networks using RT-qPCR confirmed two sets of differentially regulated genes in the T cell response to MG or to HS. Several key genes potentially involved in T cell gravisensing (Fam163b, Dnph1, Trim34, Upk-1b) were identified. A number of candidate biomarker genes of the response to MG (VAV1, VAV2, VAV3, and NFATC2) and of the response to HS (ITGAL, ITGB1, ITGB2, RAC1 and RAC2) could be used to distinguish between these processes on the gene transcription level. Together, MG induces changes in the overall transcriptome of T cells leading to specific shifts in expression of cytoskeletal network genes.


2021 ◽  
pp. 108240
Author(s):  
Ondřej Šrom ◽  
Veronika Trávníková ◽  
Johannes Wutz ◽  
Maike Kuschel ◽  
Andreas Unsoeld ◽  
...  

2021 ◽  
Author(s):  
Kai Qi ◽  
Elmar Westphal ◽  
Gerhard Gompper ◽  
Roland Winkler

Abstract Microswimmers exhibit an intriguing, highly-dynamic collective motion with large-scale swirling and streaming patterns, denoted as active turbulence — reminiscent of classical high-Reynolds-number hydrodynamic turbulence. Various experimental, numerical, and theoretical approaches have been applied to elucidate similarities and differences to inertial hydrodynamic and active turbulence. These studies reveal a wide spectrum of possible structural and dynamical behaviors of active mesoscale systems, not necessarily consistent with the predictions of the Kolmogorov-Kraichnan theory of turbulence. We use squirmers embedded in a mesoscale fluid, modeled by the multiparticle collision dynamics (MPC) approach, to explore the collective behavior of bacteria-type microswimmers. Our model includes the active hydrodynamic stress generated by propulsion, and a rotlet dipole characteristic for flagellated bacteria. We find emergent clusters, activity-induced phase separation, and swarming, depending on density, active stress, and the rotlet dipole strength. The analysis of the squirmer dynamics in the swarming phase yields Kolomogorov-Kraichnan-type hydrodynamic turbulence and energy spectra for sufficiently high concentrations and strong rotlet dipoles. This emphasizes the paramount importance of the hydrodynamic flow field for swarming and bacterial turbulence.


2021 ◽  
Author(s):  
Hadi FADLALLAH ◽  
Hassan Peerhossaini ◽  
Christopher DeGroot ◽  
Mojtaba Jarrahi

Author(s):  
Paule Dagenais ◽  
Simon Blanchoud ◽  
David Pury ◽  
Catherine Pfefferli ◽  
Tinri Aegerter-Wilmsen ◽  
...  

Understanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we are able to induce phenotypic responses to the structure of the fin. Through the ablation of specific rays in regenerating caudal fins, we generate artificially narrowed appendages in which the fin cleft depth and the positioning of rays bifurcations are perturbed compared to normal regenerates. To dissect the role of mechanotransduction in this process, we investigate the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enables us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the distal margin of regenerating fins and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 465
Author(s):  
Yoshiki Omuro ◽  
Ho Viet Khoa ◽  
Koji Mikami

The ebb tide causes calm stress to intertidal seaweeds in tide pools; however, little is known about their physiological responses to loss of water movement. This study investigated the effects of static culture of ‘Bangia’ sp. ESS1 at 15 °C on tolerance to temperature fluctuation. The freezing of aerobically cultured thalli at −80 °C for 10 min resulted in the death of most cells. By contrast, statically cultured thalli acquired freezing tolerance that increased cell viability after freeze–thaw cycles, although they did not achieve thermotolerance that would enable survival at the lethal temperature of 32 °C. Consistently, the unsaturation of membrane fatty acids occurred in static culture. Notably, static culture of thalli enhanced the release of asexual spores after freeze-and-thaw treatment. We conclude that calm stress triggers both the acquisition of freezing tolerance and the promotion of freezing-dependent asexual reproduction. These findings provide novel insights into stress tolerance and the regulation of asexual reproduction in Bangiales.


2021 ◽  
Author(s):  
Gerardo I. Zardi ◽  
Katy Rebecca Nicastro ◽  
Christopher D. McQuaid ◽  
Monique de Jager ◽  
Johan van de Koppel ◽  
...  

2021 ◽  
Author(s):  
Paule Dagenais ◽  
Simon Blanchoud ◽  
David Pury ◽  
Catherine Pfefferli ◽  
Tinri Aegerter-Wilmsen ◽  
...  

AbstractUnderstanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we are able to induce phenotypic responses to the structure of the fin. In particular, fin cleft depth and the bifurcation of the bony rays are modulated by the surface area of the stump. To dissect the role of mechanotransduction in this process, we investigate the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enables us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the tip of the fin and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Josué Jara ◽  
Francisco Alarcón ◽  
Ajay K. Monnappa ◽  
José Ignacio Santos ◽  
Valentino Bianco ◽  
...  

In some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation. In this work, we monitor structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress. Our measurements show that the hydrodynamic stress concomitantly increases the cell density population and the matrix production. At short growth timescales, the matrix mediates a weak cell-cell attractive interaction due to the depletion forces originated by the polymer constituents. Using a population dynamics model, we conclude that hydrodynamic stress causes a faster diffusion of nutrients and a higher incorporation of planktonic bacteria to the already formed microcolonies. This results in the formation of more mechanically stable biofilms due to an increase of the number of crosslinks, as shown by computer simulations. The mechanical stability also relies on a change in the chemical compositions of the matrix, which becomes enriched in carbohydrates, known to display adhering properties. Overall, we demonstrate that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions.


Sign in / Sign up

Export Citation Format

Share Document