Nitric Oxide-Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications

Author(s):  
Sama Ghalei ◽  
Megan Douglass ◽  
Hitesh Handa
RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Kumar ◽  
Viness Pillay ◽  
Yahya E. Choonara

AbstractThree-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.


2018 ◽  
Vol 135 (37) ◽  
pp. 46684 ◽  
Author(s):  
Alireza Khosravi ◽  
Laleh Ghasemi-Mobarakeh ◽  
Hossein Mollahosseini ◽  
Fatemeh Ajalloueian ◽  
Maryam Masoudi Rad ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Thi Duy Hanh Le ◽  
Volha Liaudanskaya ◽  
Walter Bonani ◽  
Claudio Migliaresi ◽  
Antonella Motta

2020 ◽  
Vol 8 (24) ◽  
pp. 7106-7116
Author(s):  
Olfat Gsib ◽  
Loek J. Eggermont ◽  
Christophe Egles ◽  
Sidi A. Bencherif

Macroporous and mechanically reinforced sequential IPN hydrogels combine the biological activity of fibrin with the robust mechanical properties of PEG to generate advanced scaffolds for dermal tissue engineering.


RSC Advances ◽  
2017 ◽  
Vol 7 (43) ◽  
pp. 26551-26558 ◽  
Author(s):  
Nimisha Parekh ◽  
Chandni Hushye ◽  
Saniya Warunkar ◽  
Sayam Sen Gupta ◽  
Anuya Nisal

Silk Fibroin microparticle scaffolds show promise in bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document