scholarly journals Microcomputed Tomography-Based Analysis of Neovascularization within Bioengineered Vascularized Tissues

Author(s):  
Idan Redenski ◽  
Shaowei Guo ◽  
Majd Machour ◽  
Ariel Szklanny ◽  
Shira Landau ◽  
...  
2021 ◽  
Author(s):  
Sascha Senck ◽  
Michael Happl ◽  
Michael Scheerer ◽  
Jonathan Glinz ◽  
Thomas Reiter ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 732
Author(s):  
Karol Alí Apaza Alccayhuaman ◽  
Stefan Tangl ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Patrick Heimel ◽  
...  

Volume-stable collagen matrices (VSCM) are conductive for the connective tissue upon soft tissue augmentation. Considering that collagen has osteoconductive properties, we have investigated the possibility that the VSCM also consolidates with the newly formed bone. To this end, we covered nine rat calvaria circular defects with a VSCM. After four weeks, histology, histomorphometry, quantitative backscattered electron imaging, and microcomputed tomography were performed. We report that the overall pattern of mineralization inside the VSCM was heterogeneous. Histology revealed, apart from the characteristic woven bone formation, areas of round-shaped hypertrophic chondrocyte-like cells surrounded by a mineralized extracellular matrix. Quantitative backscattered electron imaging confirmed the heterogenous mineralization occurring within the VSCM. Histomorphometry found new bone to be 0.7 mm2 (0.01 min; 2.4 max), similar to the chondrogenic mineralized extracellular matrix with 0.7 mm2 (0.0 min; 4.2 max). Microcomputed tomography showed the overall mineralized tissue in the defect to be 1.6 mm3 (min 0.0; max 13.3). These findings suggest that in a rat cranial defect, VSCM has a limited and heterogeneous capacity to support intramembranous bone formation but may allow the formation of bone via the endochondral route.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 925
Author(s):  
Diogo Heitor ◽  
Isabel Duarte ◽  
João Dias-de-Oliveira

X-ray microcomputed tomography has been gaining relevance in the field of cellular materials to characterize materials and analyse their microstructure. So, here, it was used together with finite element modelling to develop numerical models to estimate the effective properties (Young’s modulus) of aluminium alloy foams and evaluate the effects of processing on the results. A manual global thresholding technique using the mass as a quality indicator was used. The models were reconstructed (Marching Cubes 33), then simplified and analysed in terms of mass and shape maintenance (Hausdorff distance algorithm) and face quality. Two simplification procedures were evaluated, with and without small structural imperfections, to evaluate the impact of the procedures on the results. Results demonstrate that the developed procedures are good at minimizing changes in mass and shape of the geometries while providing good face quality, i.e., face aspect ratio. The models are also shown to be able to predict the effective properties of metallic foams in accordance with the findings of other researchers. In addition, the process of obtaining the models and the presence of small structural imperfections were shown to have a great impact on the results.


2021 ◽  
Vol 33 (12) ◽  
pp. 04021348
Author(s):  
Sang-Yeop Chung ◽  
Ji-Su Kim ◽  
Paul H. Kamm ◽  
Dietmar Stephan ◽  
Tong-Seok Han ◽  
...  

Morphologie ◽  
2018 ◽  
Vol 102 (339) ◽  
pp. 263-275 ◽  
Author(s):  
D. Chappard ◽  
J.-D. Kün-Darbois ◽  
P. Mercier ◽  
B. Guillaume ◽  
E. Aguado

Sign in / Sign up

Export Citation Format

Share Document