quantitative backscattered electron imaging
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 0)

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 732
Author(s):  
Karol Alí Apaza Alccayhuaman ◽  
Stefan Tangl ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Patrick Heimel ◽  
...  

Volume-stable collagen matrices (VSCM) are conductive for the connective tissue upon soft tissue augmentation. Considering that collagen has osteoconductive properties, we have investigated the possibility that the VSCM also consolidates with the newly formed bone. To this end, we covered nine rat calvaria circular defects with a VSCM. After four weeks, histology, histomorphometry, quantitative backscattered electron imaging, and microcomputed tomography were performed. We report that the overall pattern of mineralization inside the VSCM was heterogeneous. Histology revealed, apart from the characteristic woven bone formation, areas of round-shaped hypertrophic chondrocyte-like cells surrounded by a mineralized extracellular matrix. Quantitative backscattered electron imaging confirmed the heterogenous mineralization occurring within the VSCM. Histomorphometry found new bone to be 0.7 mm2 (0.01 min; 2.4 max), similar to the chondrogenic mineralized extracellular matrix with 0.7 mm2 (0.0 min; 4.2 max). Microcomputed tomography showed the overall mineralized tissue in the defect to be 1.6 mm3 (min 0.0; max 13.3). These findings suggest that in a rat cranial defect, VSCM has a limited and heterogeneous capacity to support intramembranous bone formation but may allow the formation of bone via the endochondral route.


Author(s):  
Markus A. Hartmann ◽  
Stéphane Blouin ◽  
Barbara M. Misof ◽  
Nadja Fratzl-Zelman ◽  
Paul Roschger ◽  
...  

AbstractQuantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about $$10^5$$ 10 5 to $$10^6$$ 10 6 times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to $$\pm 0.17$$ ± 0.17 wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.


2016 ◽  
Vol 101 (9) ◽  
pp. 3516-3525 ◽  
Author(s):  
Nadja Fratzl-Zelman ◽  
Aileen M. Barnes ◽  
MaryAnn Weis ◽  
Erin Carter ◽  
Theresa E. Hefferan ◽  
...  

Abstract Context: Type VIII osteogenesis imperfecta (OI; OMIM 601915) is a recessive form of lethal or severe OI caused by null mutations in P3H1, which encodes prolyl 3-hydroxylase 1. Objectives: Clinical and bone material description of non-lethal type VIII OI. Design: Natural history study of type VIII OI. Setting: Pediatric academic research centers. Patients: Five patients with non-lethal type VIII OI, and one patient with lethal type VIII OI. Interventions: None. Main Outcome Measures: Clinical examinations included bone mineral density, radiographs, and serum and urinary metabolites. Bone biopsy samples were analyzed for histomorphometry and bone mineral density distribution by quantitative backscattered electron imaging microscopy. Collagen biochemistry was examined by mass spectrometry, and collagen fibrils were examined by transmission electron microscopy. Results: Type VIII OI patients have extreme growth deficiency, an L1–L4 areal bone mineral density Z-score of −5 to −6, and normal bone formation markers. Collagen from bone and skin tissue and cultured osteoblasts and fibroblasts have nearly absent 3-hydroxylation (1–4%). Collagen fibrils showed abnormal diameters and irregular borders. Bone histomorphometry revealed decreased cortical width and very thin trabeculae with patches of increased osteoid, although the overall osteoid surface was normal. Quantitative backscattered electron imaging showed increased matrix mineralization of cortical and trabecular bone, typical of other OI types. However, the proportion of bone with low mineralization was increased in type VIII OI bone, compared to type VII OI. Conclusions: P3H1 is the unique enzyme responsible for collagen 3-hydroxylation in skin and bone. Bone from non-lethal type VIII OI children is similar to type VII, especially bone matrix hypermineralization, but it has distinctive features including extremely thin trabeculae, focal osteoid accumulation, and an increased proportion of low mineralized bone.


Sign in / Sign up

Export Citation Format

Share Document