3D-Printed β-Tricalcium Phosphate Scaffold Combined with a Pulse Electromagnetic Field Promotes the Repair of Skull Defects in Rats

2019 ◽  
Vol 5 (10) ◽  
pp. 5359-5367 ◽  
Author(s):  
Haifeng Liang ◽  
Xiao Liu ◽  
Ying Pi ◽  
Qiang Yu ◽  
Yukun Yin ◽  
...  
2020 ◽  
Vol 14 (12) ◽  
pp. 1858-1868
Author(s):  
Martin Bonde Jensen ◽  
Casper Slots ◽  
Nicholas Ditzel ◽  
Stefanie Kolstrup ◽  
Moustapha Kassem ◽  
...  

Author(s):  
Yu. Vasetskiy ◽  
◽  
I. Kondratenko ◽  
I. Mazurenko ◽  
М. Pashchyn ◽  
...  

2021 ◽  
Vol 40 ◽  
pp. 101895 ◽  
Author(s):  
Susmita Bose ◽  
Arjak Bhattacharjee ◽  
Dishary Banerjee ◽  
Aldo R. Boccaccini ◽  
Amit Bandyopadhyay

2013 ◽  
Vol 114 (5) ◽  
pp. 647-655 ◽  
Author(s):  
Chung-Hwan Chen ◽  
Yi-Shan Lin ◽  
Yin-Chih Fu ◽  
Chih-Kuang Wang ◽  
Shun-Cheng Wu ◽  
...  

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.


2011 ◽  
Vol 299-300 ◽  
pp. 65-68
Author(s):  
Ming Gao ◽  
Li Li Zhang ◽  
Tao Huang ◽  
Meng Ru Lv

A strong pulse electromagnetic field was employed to treat the surface layer of several metal materials. The results showed that the treatment of the strong pulse electromagnetic field could modify the microstructure of the region around the crack on the 45# steel surface. It could also make the recovery process occur in the scratch on the brass surface, and make the surface layer of the Wood’s alloy melt in a very shot time. These results indicated that the strong electromagnetic pulse could be developed as an effective non-contact method for the metal surface processing.


Author(s):  
Ziyue Peng ◽  
Chengqiang Wang ◽  
Chun Liu ◽  
Haixia Xu ◽  
Yihan Wang ◽  
...  

Fabricate a MgO2-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.


2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


2019 ◽  
Vol 27 (3) ◽  
pp. 466-477 ◽  
Author(s):  
E. D. Kuzmenko ◽  
S. M. Bahrii ◽  
U. O. Dzioba

On the basis of the analysis of the literature sources, we determined the possible range of using the method of the Earth`s natural pulse electromagnetic field. As a result of detailed analysis of domestic and foreign research, we demonstrated the relevance of conducting research focused on development of the Earth'snatural pulse electromagneticfield (or ENPEMF). Using the results of theoretical studies, the advantages and disadvantages of the ENPEMF method were determined. A complex of physical processes which preceded the development of the pulse electromagnetic field of the Earth was characterized, and the impact of mechanical deformations of rocks on the change in the condition of the electromagnetic field was experimentally proven. The main fundamentals on the determination of depth range of the ENPEMF method were examined and a new approach to interpretation of the data was suggested. We conducted an analysis of methods developed earlier of calculating geometric parameters of the sources which generate electromagnetic impulses. Their practicability at a certain stage of solving the data of geological tasks was experimentally tested. We determined the factors which affect the depth range of the ENPEMF method. A mathematical solution of the effectiveness of the ENPEMF method was suggested and determined the relations between the depth parameter of the study and the frequency of measuring and effective value of specific electric resistance. On the example of different objects, the effectiveness and correctness of the suggested method of determining the depth range parameter was proven. In particular, the theoretical results of the study were tested and confirmed on objects of different geological-morphological and engineering-technical aspects, i.e. Novo-Holyn mine in the Kalush-Holynske potash deposit and the multi-storey educational building of the University in Ivano-Frankivsk. The practicability of using the ENPEMF method in combination with other methods of electrometry for solving practical geological tasks was experimentally proven.


Sign in / Sign up

Export Citation Format

Share Document