Fe(III)-Based Tandem Catalysis for Amidomethylative Multiple Substitution Reactions of α-Substituted Styrene Derivatives

ACS Catalysis ◽  
2020 ◽  
Vol 10 (18) ◽  
pp. 10627-10636
Author(s):  
Xiaolin Qian ◽  
Hui Zhou ◽  
Hetti Handi Chaminda Lakmal ◽  
James Lucore ◽  
Xuesong Wang ◽  
...  
2020 ◽  
Author(s):  
Shogo Mori ◽  
Takahiro Aoki ◽  
Kaliyamoorthy Selvam ◽  
Shunichi Fukuzumi ◽  
Jieun Jung ◽  
...  

Despite the continuing popularity of radical reactions in organic synthesis, much remains to be explored in this area. Herein, we describe how spatiotemporal control can be exerted over the formation and reactivity of divergent exchangeable formamide radicals using nickel complexes with a semiconductor material (TiO<sub>2</sub>) under irradiation from near-UV–Vis light. Depending on the bipyridine ligand used and the quantity of the nickel complex that is hybridized on or nonhydridized over the TiO<sub>2</sub> surface, these radicals selectively undergo substitution reactions at the carbon center of carbon–bromine bonds that proceed via three different pathways. As the scalable production of formamides from CO<sub>2</sub> does not produce salt waste, these methods could add a new dimension to the search for carbon neutrality through the indirect incorporation of CO<sub>2</sub> into organic frameworks.


2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


2019 ◽  
Author(s):  
Benjamin Lipp ◽  
Lisa Marie Kammer ◽  
Murat Kucukdisli ◽  
Adriana Luque ◽  
Jonas Kühlborn ◽  
...  

Simultaneous sulfonylation/arylation of styrene derivatives is achieved in a photoredox-catalyzed three-component reaction using visible light. A broad variety of difunctionalized products is accessible in mostly excellent yields and high diastereoselectivity. The developed reaction is scalable and suitable for the modification of styrene-functionalized biomolecules. Mechanistic investigations suggest the transformation to be operating through a designed sequence of radical formation and radical combination.<br>


Author(s):  
Neelottama Kushwaha ◽  
C S Sharma

: Triazine is the six-membered heterocyclic ring containing three nitrogen which replaces carbon-hydrogen unit in the benzene ring. Based on nitrogen position present in the ring system, it is categorized in three isomeric forms i.e.1, 2, 3-triazine (vicinal triazine), 1, 2, 4-triazine (asymmetrical triazine or isotriazine) and 1, 3, 5-triazine (symmetrical or s-triazine or cyanidine). Triazines have weakly basic property. Its isomers have much weaker resonance energy than benzene structure, so nucleophilic substitution reactions are more preferred than electrophilic substitution reactions. Triazine isomers and their derivatives are known to play important roles possessing various activities in medicinal and agricultural fields such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal, antimalarial and antimicrobial agents.


2019 ◽  
Vol 16 (5) ◽  
pp. 415-423
Author(s):  
Metin Konus ◽  
Selahattin Aydemir ◽  
Can Yilmaz ◽  
Arif Kivrak ◽  
Aslihan Kurt Kizildogan ◽  
...  

5-bromo-2-(prop-2-yn-1-yloxy)benzaldehyde (compound 3) and 3,5-di-tert-butyl-2-(prop-2- yn-1-yloxy)benzaldehyde (compound 5) were synthesized via nucleophilic substitution reactions. Compound 5 showed higher antioxidant capacity with respect to compound 3 in all the four different antioxidant activity methods used. Moreover, in phosphomolybdenum assay, compound 5, with 1.1 proportion value, showed almost the same total antioxidant capacity compared to universal trolox standard. Furthermore, Broth microdilution method and agar disc diffusion tests demonstrated that the same compound also exhibited good antibacterial activity towards the bacteria Bacillus subtilis. Finally, both of the benzaldehyde compounds showed high antifungal activity against Aspergillus niger. In this study, compound 5 (IC50: 54.3 µg/ml) showed significant cytotoxic activity against breast adenocarcinoma cell line MCF-7 with respect to compound 3 (IC50: 173.4 µg/ml).


1983 ◽  
Vol 48 (10) ◽  
pp. 2924-2936 ◽  
Author(s):  
Karel Mach ◽  
Lidmila Petrusová ◽  
Helena Antropiusová ◽  
Vladimír Hanuš ◽  
František Tureček ◽  
...  

μ-(η5 : η5-Fulvalene)-di-μ-hydrido-bis(η5-cyclopentadienyltitanium) and μ-(η5 : η5-fulvalene)-μ-chloro-μ-hydrido-bis(cyclopentadienyltitanium) form a thermally stable complex which catalyzes the intermolecular hydrogen transfer in unsaturated hydrocarbons, in addition to isomerizations and cyclizations. Cyclic hydrocarbons disproportionate under catalysis to saturated and aromatic hydrocarbons, while linear olefins yield predominantly linear alkanes and high molecular weight tar. The catalyst enables the hydrocarbon system to approach the thermodynamic equilibrium through a series of substitution reactions between alkyl- and allyltitanocene-like species and olefins and dienes. The catalytic complex was characterized by UV and ESR spectra. About one half of overall titanium content could be converted to mononuclear η3-allyltitanocene-like species, stable up to 400 °C. This exceptional thermal stability is ascribed to a firmly bound allyl containing ligand.


Sign in / Sign up

Export Citation Format

Share Document