Carbonaceous Aerosols over Lachung in the Eastern Himalayas: Primary Sources and Secondary Formation of Organic Aerosols in a Remote High-Altitude Environment

Author(s):  
B. S. Arun ◽  
Mukunda M. Gogoi ◽  
Prashant Hegde ◽  
Arup Borgohain ◽  
Suresh K. R. Boreddy ◽  
...  
2012 ◽  
Vol 46 (18) ◽  
pp. 9846-9853 ◽  
Author(s):  
Song Guo ◽  
Min Hu ◽  
Qingfeng Guo ◽  
Xin Zhang ◽  
Mei Zheng ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
pp. 1775-1796
Author(s):  
Qing Yu ◽  
Jing Chen ◽  
Weihua Qin ◽  
Siming Cheng ◽  
Yuepeng Zhang ◽  
...  

Abstract. Water-soluble organic carbon (WSOC) accounts for a large proportion of aerosols and plays a critical role in various atmospheric chemical processes. In order to investigate the primary sources and secondary production of WSOC in downtown Beijing, day and night fine particulate matter (PM2.5) samples in January (winter), April (spring), July (summer) and October (autumn) 2017 were collected and analyzed for WSOC and organic tracers in this study. WSOC was dominated by its moderately hydrophilic fraction and showed the highest concentration in January and comparable levels in April, July and October 2017. Some typical organic tracers were chosen to evaluate the emission strength and secondary formation of WSOC. Seasonal variation of the organic tracers suggested significantly enhanced formation of anthropogenic secondary organic aerosols (SOAs) during the sampling period in winter and obviously elevated biogenic SOA formation during the sampling period in summer. These organic tracers were applied into a positive matrix factorization (PMF) model to calculate the source contributions of WSOC as well as its moderately and strongly hydrophilic portions. The secondary sources contributed more than 50 % to WSOC, with higher contributions during the sampling periods in summer (75.1 %) and winter (67.4 %), and the largest contributor was aromatic SOC. In addition, source apportionment results under different pollution levels suggested that controlling biomass burning and aromatic precursors would be effective to reduce WSOC during the haze episodes in cold seasons. The impact factors for the formation of different SOA tracers and total secondary organic carbon (SOC) as well as moderately and strongly hydrophilic SOC were also investigated. The acid-catalyzed heterogeneous or aqueous-phase oxidation appeared to dominate in the SOC formation during the sampling period in winter, while the photochemical oxidation played a more critical role during the sampling period in summer. Moreover, photooxidation played a more critical role in the formation of moderately hydrophilic SOC, while the heterogeneous or aqueous-phase reactions had more vital effects on the formation of strongly hydrophilic SOC.


2021 ◽  
pp. 105799
Author(s):  
B.S. Arun ◽  
Mukunda M. Gogoi ◽  
Arup Borgohain ◽  
Prashant Hegde ◽  
Shyam Sundar Kundu ◽  
...  

2011 ◽  
Vol 11 (10) ◽  
pp. 28219-28272 ◽  
Author(s):  
T.-M. Fu ◽  
J. J. Cao ◽  
X. Y. Zhang ◽  
S. C. Lee ◽  
Q. Zhang ◽  
...  

Abstract. We simulate elemental carbon (EC) and organic carbon (OC) aerosols in China and compare model results to surface measurements at Chinese rural and background sites, with the goal of deriving "top-down" emission estimates of EC and OC, as well as better quantifying the secondary sources of OC. We include in the model state-of-the-science Chinese "bottom-up" emission inventories for EC (1.92 Tg C yr−1) and OC (3.95 Tg C yr−1), as well as updated secondary OC formation pathways. The average simulated annual mean EC concentration at rural and background site is 1.1 μg C m−3, 56% lower than the observed 2.5 μg C m−3. The average simulated annual mean OC concentration at rural and background sites is 3.4 μg C m−3, 76% lower than the observed 14 μg C m−3. Multiple regression to fit surface monthly mean EC observations at rural and background sites yields best estimate of Chinese EC source of 3.05 ± 0.78 Tg C yr−1. Based on the top-down EC emission estimate and observed seasonal primary OC/EC ratios, we estimate Chinese OC total emissions to be 6.67 ± 1.30 Tg C yr−1. Using these top-down estimates, the simulated average annual mean EC concentration at rural and background sites significantly improved to 1.9 μg C m−3. However, the model still significantly underestimates observed OC in all seasons (simulated average annual mean OC at rural and background sites is 5.4 μg C m−3), with little skill in capturing the spatiotemporal variability. Secondary formation accounts for 21% of Chinese annual mean surface OC in the model, with isoprene being the most important precursor. In summer, as high as 62% of the observed surface OC may be due to secondary formation in eastern China. Our analysis points to three shortcomings in the current bottom-up inventories of Chinese carbonaceous aerosols: (1) the anthropogenic source is severely underestimated, particularly for OC; (2) there is a missing source in western China, likely associated with the use of biofuels or other low-quality fuels for heating; and (3) sources in fall are not well represented, either because the seasonal shifting of emissions and/or secondary formation are poorly captured or because specific fall emission events are missing. More regional measurements with better spatiotemporal coverage are needed to resolve these shortcomings.


2021 ◽  
Author(s):  
Arun Bs ◽  
Mukunda Gogoi ◽  
Prashant Hegde ◽  
Suresh Babu

<p>The rapid changes in the pattern of atmospheric warming over the Himalayas, along with severe degradation of Himalayan glaciers in recent years suggest the inevitability of accurate source characterization and quantification of the impact of aerosols on the Himalayan atmosphere and snow. In this regard, extensive study of the chemical compositions of aerosols at two distinct regions, Himansh (32.4<sup>ᴼ</sup>N, 77.6<sup>ᴼ</sup>E, ~ 4080 m a.s.l) and Lachung (27.4<sup>ᴼ</sup>N, 88.4<sup>ᴼ</sup>E, ~ 2700 m a.s.l), elucidates distinct signatures of the sources and types of aerosols prevailing over the western and eastern parts of Himalayas. The mass-mixing ratios of water-soluble (Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl-, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, MSA<sup>-</sup>, C<sub>2</sub>O<sub>4</sub><sup>2-</sup>), carbonaceous (EC, OC, WSOC) and selected elemental (Al, Fe, Cu, Cr, Ti) species depicted significant abundance of mineral dust aerosols (~ 67%), along with a significant contribution of carbonaceous aerosols (~ 9%) during summer to autumn (August-October) over the western Himalayan site. On the other hand, the eastern Himalayan site is found to be dominant of OC (~ 53% in winter) followed by SO<sub>4</sub><sup>2-</sup> (as high as 37% in spring) and EC (8-12%) during August to February. However, OC/EC and WSOC/OC ratios showed significantly higher values over both the sites (~ 12.5, and 0.56 at Himansh; ~ 5.7 and ~ 0.74 at Lachung) indicating the secondary formation of organic aerosols via chemical aging over both the sites. The enrichment factors estimated from the concentrations of trace elements over the western Himalayan site revealed the influence of anthropogenic source contribution from the regional hot-spots of Indo-Gangetic Plains, in addition to that of west Asia and the Middle East countries. On the other hand, the source apportionment of aerosols (based on positive matrix factorization - PMF model) over the eastern Himalayas demonstrated the biomass-burning aerosols (25.94%), secondary formation of aerosols via chemical aging (15.94%), vehicular and industrial emissions (20.54%), primary emission sources associated with mineral dust sources (22.28%) and aged secondary aerosols (15.31%) as the major sources of aerosols. Due to abundant anthropogenic source impacts at the eastern Himalayan site, the atmospheric forcing is most elevated in winter (13.4 ± 4.4 Wm<sup>-2</sup>), which is more than two times the average values seen at the western Himalayan region during the study period. The heavily polluted eastern part of the IGP is a potential anthropogenic source region contributing to the aerosol loading at the eastern Himalayas. These observations have far-reaching implications in view of the role of aerosols on regional radiative balance and their impact on snow/glacier coverage.</p>


2010 ◽  
Vol 10 (24) ◽  
pp. 11987-12004 ◽  
Author(s):  
J. Sciare ◽  
O. d'Argouges ◽  
Q. J. Zhang ◽  
R. Sarda-Estève ◽  
C. Gaimoz ◽  
...  

Abstract. Hourly concentrations of inorganic salts (ions) and carbonaceous material in fine aerosols (aerodynamic diameter, A.D. <2.5 μm) have been determined experimentally from fast measurements performed for a 3-week period in spring 2007 in Paris (France). The sum of these two chemical components (ions and carbonaceous aerosols) has shown to account for most of the fine aerosol mass (PM2.5). This time-resolved dataset allowed investigating the factors controlling the levels of PM2.5 in Paris and showed that polluted periods with PM2.5 > 15 μg m−3 were characterized by air masses of continental (North-Western Europe) origin and chemical composition made by 75% of ions. By contrast, periods with clean marine air masses have shown the lowest PM2.5 concentrations (typically of about 10 μg m−3); carbonaceous aerosols contributing for most of this mass (typically 75%). In order to better discriminate between local and continental contributions to the observed chemical composition and concentrations of PM2.5 over Paris, a comparative study was performed between this time-resolved dataset and the outputs of a chemistry transport model (CHIMERE), showing a relatively good capability of the model to reproduce the time-limited intense maxima observed in the field for PM2.5 and ion species. Different model scenarios were then investigated switching off local and European (North-Western and Central) emissions. Results of these scenarios have clearly shown that most of the ions observed over Paris during polluted periods, were either transported or formed in-situ from gas precursors transported from Northern Europe. On the opposite, long-range transport from Europe appeared to weakly contribute to the levels of carbonaceous aerosols observed over Paris. The model failed to properly account for the concentration levels and variability of secondary organic aerosols (SOA) determined experimentally by the EC-tracer method. The abundance of SOA (relatively to organic aerosol, OA) was as much as 75%, showing a weak dependence on air masses origin. Elevated SOA/OA ratios were also observed for air masses having residence time above ground of less than 10 h, suggesting intense emissions and/or photochemical processes leading to rapid formation of secondary organic aerosols.


Sign in / Sign up

Export Citation Format

Share Document