scholarly journals Effect of the Surface Hydrophobicity–Morphology–Functionality of Nanoplastics on Their Homoaggregation in Seawater

2022 ◽  
Author(s):  
Cloé Veclin ◽  
Cloé Desmet ◽  
Alice Pradel ◽  
Andrea Valsesia ◽  
Jessica Ponti ◽  
...  
1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed R. Elmarghany ◽  
Ahmed H. El-Shazly ◽  
Saeid Rajabzadeh ◽  
Mohamed S. Salem ◽  
Mahmoud A. Shouman ◽  
...  

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1263
Author(s):  
Liyun Xu ◽  
Yu Zhang ◽  
Ying Guo ◽  
Ruiyun Zhang ◽  
Jianjun Shi ◽  
...  

In order to obtain stable superhydrophobicity, suitable hydrophobic treatment agents should be selected according to different material properties. In this paper, cotton and poly(ethylene terephthalate) (PET) fabrics were respectively coated with dodecyl methacrylate (LMA) via argon combined capacitively coupled plasma (CCP), and the surface hydrophobicity and durability of the treated cotton and polyester fabrics are also discussed. An interesting phenomenon happened, whereby the LMA-coated cotton fabric (Cotton-g-LMA) had better water repelling and mechanical durability properties than LMA-coated PET fabric (PET-g-LMA), and LMA-coated hydroxyl-grafted PET fabrics (PET fabrics were successively coated with polyethylene glycol (PEG) and LMA, PET-g-PEG & LMA) had a similar performance to cotton fabrics. The water contact angles of Cotton-g-LMA, PET-g-LMA and PET-g-PEG & LMA were 156°, 153° and 155°, respectively, and after 45 washing cycles or 1000 rubbing cycles, the corresponding water contact angles decreased to 145°, 88°, 134° and 146°, 127° and 143°, respectively. Additionally, thermoplastic polyurethane (TPU) and polyamides-6 (PA6) fabrics all exhibited the same properties as the PET fabric. Therefore, the grafting of hydroxyl can improve the hydrophobic effect of LMA coating and the binding property between LMA and fabrics effectively, without changing the wearing comfort.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Passakorn Kingwascharapong ◽  
Manat Chaijan ◽  
Supatra Karnjanapratum

AbstractImpact of ultrasound-assisted process (UAP) on yield, functional properties, antioxidant properties and molecular characteristics of protein extracted from Bombay locusts (BL) (Patanga succinta L.) was studied. Different conditions of UAP were implemented for different amplitudes (40–60%) and times (10–30 min) during aqueous extraction. Notably, UAP could enhance yield and protein recovery, compared with those from typical process (TP) (continuously stirred at 100 rpm at room temperature for 1 h). UAP conditions used governed the change of surface hydrophobicity and free α-amino content of BL. UAP could improve solubility of BL, especially at pH levels higher than 2. UAP had no significant (p > 0.05) detrimental effects on foaming capacity and stability of BL. Nevertheless, UAP, particularly at 50–60% amplitudes, affected the emulsion activity and stability of BL. UAP provided BL with high radical scavenging activities and good electron donating ability, especially that from 60% amplitude for 20 min (UAP-60/20). UAP-60/20 showed the impact on change of isoelectric point and molecular characteristic monitored by Fourier transform infrared (FTIR) of BL, compared to those from TP. In addition, BL was also an excellent source of both essential and nonessential amino acids. Therefore, UAP potentially enhanced BL extraction efficiency, resulting the BL with good functional and antioxidative properties.


Sign in / Sign up

Export Citation Format

Share Document