Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants

Author(s):  
Ruchir Priyadarshi ◽  
Parya Ezati ◽  
Jong-Whan Rhim
2021 ◽  
Vol 109 ◽  
pp. 230-244
Author(s):  
Diogo Videira-Quintela ◽  
Olga Martin ◽  
Gemma Montalvo

Author(s):  
Muhammad Zubair ◽  
Rehan Ali Pradhan ◽  
Muhammad Arshad ◽  
Aman Ullah

1993 ◽  
Vol 40 (10) ◽  
pp. 697-701 ◽  
Author(s):  
Kinnosuke ODAKE ◽  
Akikazu HATANAKA ◽  
Tadahiko KAJIWARA ◽  
Yutaka HIGASHIMURA ◽  
Seiichi WADA ◽  
...  

2021 ◽  
pp. 107328
Author(s):  
María Flórez ◽  
Esther Guerra-Rodríguez ◽  
Patricia Cazón ◽  
Manuel Vázquez

2020 ◽  
Vol 31 (2) ◽  
pp. 127-137
Author(s):  
Chatarina Lilis Suryani ◽  
◽  
Tutik Dwi Wahyuningsih ◽  
Supriyadi Supriyadi ◽  
Umar Santoso ◽  
...  

Plant leaves are the primary source of natural colorants for food, mainly due to their chlorophyll content. However, the plant types and the degree of leaf maturity determine the quality and quantity of the chlorophyll. This study aimed to determine the best maturity level of pandan (Pandanus amaryllifolius Roxb.) leaves that serves as potential source of chlorophyll for natural food colorants. Eighty three pandan plants obtained from six different farming locations in Bantul Regency, Yogyakarta, Indonesia were used as samples. The leaves were grouped into four levels of maturity using descriptive statistics based on their morphology, anatomy, color, and chlorophyll contents. The results showed that the average number of leaves ranged from 20-24 leaves per plant (at 95% confidence interval), and 96.4% of the plant had a maximum of 24 leaves. The leaf maturity was grouped into (1) young, (2) medium, (3) mature, and (4) over mature, corresponding to leaf number 1-6, 7-12, 13-18, and 19-24, respectively. The higher the leaf maturity, the higher the chlorophyll content. However, the over mature leaves were only slightly different from the mature ones. In addition, pandan leaves have specific flavor and contain carotenoid, phenolic, and flavonoid substances. Anatomically, the mesophyll’s size was greatest in the mature leaves, while the size of chloroplast was not significantly different from medium to over mature leaves. Based on the chlorophyll content and mesophyll size, it was concluded that mature pandan leaves were the best source of chlorophyll, containing chlorophyll of 623.08 mg/100 g dry weight (DW).


Author(s):  
Ahmed I. Osman ◽  
Mahmoud Hefny ◽  
M. I. A. Abdel Maksoud ◽  
Ahmed M. Elgarahy ◽  
David W. Rooney

AbstractHuman activities have led to a massive increase in $$\hbox {CO}_{2}$$ CO 2 emissions as a primary greenhouse gas that is contributing to climate change with higher than $$1\,^{\circ }\hbox {C}$$ 1 ∘ C global warming than that of the pre-industrial level. We evaluate the three major technologies that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We review the advances in carbon capture, storage and utilisation. We compare carbon uptake technologies with techniques of carbon dioxide separation. Monoethanolamine is the most common carbon sorbent; yet it requires a high regeneration energy of 3.5 GJ per tonne of $$\hbox {CO}_{2}$$ CO 2 . Alternatively, recent advances in sorbent technology reveal novel solvents such as a modulated amine blend with lower regeneration energy of 2.17 GJ per tonne of $$\hbox {CO}_{2}$$ CO 2 . Graphene-type materials show $$\hbox {CO}_{2}$$ CO 2 adsorption capacity of 0.07 mol/g, which is 10 times higher than that of specific types of activated carbon, zeolites and metal–organic frameworks. $$\hbox {CO}_{2}$$ CO 2 geosequestration provides an efficient and long-term strategy for storing the captured $$\hbox {CO}_{2}$$ CO 2 in geological formations with a global storage capacity factor at a Gt-scale within operational timescales. Regarding the utilisation route, currently, the gross global utilisation of $$\hbox {CO}_{2}$$ CO 2 is lower than 200 million tonnes per year, which is roughly negligible compared with the extent of global anthropogenic $$\hbox {CO}_{2}$$ CO 2 emissions, which is higher than 32,000 million tonnes per year. Herein, we review different $$\hbox {CO}_{2}$$ CO 2 utilisation methods such as direct routes, i.e. beverage carbonation, food packaging and oil recovery, chemical industries and fuels. Moreover, we investigated additional $$\hbox {CO}_{2}$$ CO 2 utilisation for base-load power generation, seasonal energy storage, and district cooling and cryogenic direct air $$\hbox {CO}_{2}$$ CO 2 capture using geothermal energy. Through bibliometric mapping, we identified the research gap in the literature within this field which requires future investigations, for instance, designing new and stable ionic liquids, pore size and selectivity of metal–organic frameworks and enhancing the adsorption capacity of novel solvents. Moreover, areas such as techno-economic evaluation of novel solvents, process design and dynamic simulation require further effort as well as research and development before pilot- and commercial-scale trials.


Sign in / Sign up

Export Citation Format

Share Document