Polymeric Matrix-Based Nanoplatforms toward Tumor Therapy and Diagnosis

2021 ◽  
pp. 21-48
Author(s):  
Houjuan Zhu ◽  
Xian Jun Loh ◽  
Enyi Ye ◽  
Zibiao Li
Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Hailiang Chen ◽  
...  

The targeted multi-responsive drug delivery systems with MRI capacity were anticipated as a promising strategy for tumor therapy and diagnosis. Herein, we successfully synthesized anisamide-modified and non-modified UV/GSH-responsive molecules (10,10-NB-S-S-P-AA...


2021 ◽  
Vol 23 ◽  
pp. 101036
Author(s):  
Shiyang Lin ◽  
Yi Cao ◽  
Jiajie Chen ◽  
Zhengfang Tian ◽  
Yufang Zhu

2020 ◽  
Vol 74 (12) ◽  
pp. 939-945
Author(s):  
Cristina Müller ◽  
Martin Béhé ◽  
Susanne Geistlich ◽  
Nicholas P. van der Meulen ◽  
Roger Schibli

The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for successful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affinity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastructure for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type laboratories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for 'first-in-human' studies. This article gives an overview of the research activities at CRS in the field of TRT by the presentation of a few selected projects.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 425
Author(s):  
Jia Luo ◽  
Zongyu Guan ◽  
Weijie Gao ◽  
Chen Wang ◽  
Zhongyuan Xu ◽  
...  

Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the “double-locked” strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-β-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of β-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first “key”) and pH (second “key”), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.


Author(s):  
Minh Nguyen ◽  
Guang Huan-Tu ◽  
Melissa Gonzalez-Edick ◽  
Victor M Rivera ◽  
Tim Clackson ◽  
...  
Keyword(s):  

2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Shingo Nishikawa ◽  
Ryo Ariyasu ◽  
Tomoaki Sonoda ◽  
Masafumi Saiki ◽  
Takahiro Yoshizawa ◽  
...  

A 27-year-old man was diagnosed with inflammatory myofibroblastic tumor, and multiple lymph node and subcutaneous metastases. After several administrations of anti-tumor therapy, he underwent mediastinal lymph node biopsy using endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) to confirm tumor relapse. Five weeks later, he complained of chest pain, then rapidly developed shock due to acute pericarditis. Although he was treated with antibiotics for anaerobic bacterial infection and cardiac drainage, mediastinal lymph node abscess and pericarditis did not improve. After the surgical procedure, his physical condition dramatically improved and he was treated with another molecularly targeted therapy. Pericarditis associated with EBUS-TBNA is extremely rare. In this case, salvage was achieved by surgical drainage of the lymph node abscess and pericarditis, and long survival was obtained with further administration of anti-tumor treatment.


Sign in / Sign up

Export Citation Format

Share Document