Enabling Selectively Tunable Mechanical Properties of Graphene Oxide/Silk Fibroin/Cellulose Nanocrystal Bionanofilms

ACS Nano ◽  
2021 ◽  
Author(s):  
Hyeonho Cho ◽  
Ahmad Shakil ◽  
Andreas A. Polycarpou ◽  
Sunghan Kim
2020 ◽  
Vol 248 ◽  
pp. 116802 ◽  
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Fateme Radinekiyan ◽  
Hamid Madanchi ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Ali Maleki

Langmuir ◽  
2019 ◽  
Vol 35 (41) ◽  
pp. 13427-13434 ◽  
Author(s):  
Malika Talantikite ◽  
Nadège Beury ◽  
Céline Moreau ◽  
Bernard Cathala

RSC Advances ◽  
2014 ◽  
Vol 4 (27) ◽  
pp. 14304-14313 ◽  
Author(s):  
Lin Liu ◽  
Xiaogang Yang ◽  
Houyong Yu ◽  
Chao Ma ◽  
Juming Yao

Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.


Friction ◽  
2021 ◽  
Author(s):  
Hyeonho Cho ◽  
Joonho Lee ◽  
Hyundo Hwang ◽  
Woonbong Hwang ◽  
Jin-Gyun Kim ◽  
...  

AbstractUnderstanding the mechanical properties of bionanofilms is important in terms of identifying their durability. The primary focus of this study is to examine the effect of water vapor annealed silk fibroin on the indentation modulus and hardness of graphene oxide–silk fibroin (GO–SF) bionanofilms through nanoindentation experiments and finite element analysis (FEA). The GO–SF bionanofilms were fabricated using the layer-by-layer technique. The water vapor annealing process was employed to enhance the interfacial properties between the GO and SF layers, and the mechanical properties of the GO–SF bionanofilms were found to be affected by this process. By employing water vapor annealing, the indentation modulus and hardness of the GO–SF bionanofilms can be improved. Furthermore, the FEA models of the GO–SF bionanofilms were developed to simulate the details of the mechanical behaviors of the GO–SF bionanofilms. The difference in the stress and strain distribution inside the GO–SF bionanofilms before and after annealing was analyzed. In addition, the load-displacement curves that were obtained by the developed FEA model conformed well with the results from the nanoindentation tests. In summary, this study presents the mechanism of improving the indentation modulus and hardness of the GO–SF bionanofilms through the water vapor annealing process, which is established with the FEA simulation models.


2015 ◽  
Vol 1 (10) ◽  
pp. 964-970 ◽  
Author(s):  
Alexander N. Mitropoulos ◽  
Benedetto Marelli ◽  
Chiara E. Ghezzi ◽  
Matthew B. Applegate ◽  
Benjamin P. Partlow ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1456
Author(s):  
Isabel Matos Oliveira ◽  
Cristiana Gonçalves ◽  
Myeong Eun Shin ◽  
Sumi Lee ◽  
Rui Luis Reis ◽  
...  

Rheumatoid arthritis is a rheumatic disease for which a healing treatment does not presently exist. Silk fibroin has been extensively studied for use in drug delivery systems due to its uniqueness, versatility and strong clinical track record in medicine. However, in general, natural polymeric materials are not mechanically stable enough, and have high rates of biodegradation. Thus, synthetic materials such as gellan gum can be used to produce composite structures with biological signals to promote tissue-specific interactions while providing the desired mechanical properties. In this work, we aimed to produce hydrogels of tyramine-modified gellan gum with silk fibroin (Ty–GG/SF) via horseradish peroxidase (HRP), with encapsulated betamethasone, to improve the biocompatibility and mechanical properties, and further increase therapeutic efficacy to treat rheumatoid arthritis (RA). The Ty–GG/SF hydrogels presented a β-sheet secondary structure, with gelation time around 2–5 min, good resistance to enzymatic degradation, a suitable injectability profile, viscoelastic capacity with a significant solid component and a betamethasone-controlled release profile over time. In vitro studies showed that Ty–GG/SF hydrogels did not produce a deleterious effect on cellular metabolic activity, morphology or proliferation. Furthermore, Ty–GG/SF hydrogels with encapsulated betamethasone revealed greater therapeutic efficacy than the drug applied alone. Therefore, this strategy can provide an improvement in therapeutic efficacy when compared to the traditional use of drugs for the treatment of rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document