scholarly journals Effects of Extended Surfactant Structure on the Interfacial Tension and Optimal Salinity of Dilute Solutions

ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12410-12417
Author(s):  
Weidong He ◽  
Jijiang Ge ◽  
Guicai Zhang ◽  
Ping Jiang ◽  
Luchao Jin
2012 ◽  
Vol 550-553 ◽  
pp. 36-39 ◽  
Author(s):  
Li Mei Sun ◽  
Guo Qiang Gao ◽  
Lu Shan Wang ◽  
Zhong Qiang Tian ◽  
Jie Cui ◽  
...  

Surfactant ultra-low interfacial tension (IFT) for internal olefin sulfonate with iso-amylalcohol (IAA) as co-solvent against heptane, octane and decane at 20 °C, 50 °C, and 90 °C respectively have been systematically investigated, as well as the dynamic retention in porous media. The results show for oils with alkane carbon number from 7 to 10 and temperature from 20 °C to 90 °C, optimal salinity starts from 6.5 wt% to 11.6 wt% NaCl, where ultra-low IFT occurs. While at high salinity (at least from 6 wt% NaCl ), the retention is too high for surfactant flooding to be applicable. Only internal olefin sulfonate with co-solvent alone can not provide a perfect formulation with ultra-low IFT and low retention.


1981 ◽  
Vol 21 (05) ◽  
pp. 573-580 ◽  
Author(s):  
J.H. Bae ◽  
C.B. Petrick

Abstract A sulfonate system composed of Stepan Petrostep TM 465, Petrostep 420, and 1-pentanol was investigated. The system was found to give ultralow interfacial tension against crude oil in a reasonable range of salinity and sulfonate concentrations. It also was found that sulfonate partitioned predominantly into the microemulsion phase. However, a significant amount also partitioned into water and, at high salinity, into the oil phase. On the other hand, the oil-soluble 1-pentanol partitioned mostly into oil and microemulsion phases.The interfacial tension between excess oil and water phases was ultralow, in the range of 10-3 mN/m. The tensions were close to and paralleled those between the middle and water phases. The trend remained the same even when the alcohol content changed. This means that in the salinity range that produces a three-phase region, below the optimal salinity, the water phase effectively displaces both oil and middle phases, even though the oil may not be displaced effectively by the middle phase. The implication is that, from an interfacial tension point of view, the oil recovery would be more favorable in the salinity range below the optimal salinity with the mixed petroleum sulfonate system used here. This was confirmed by oil recovery tests in Berea cores. It also was concluded that the change in viscosity upon microemulsion formation might have a significant influence on the surfactant flood performance. Introduction During a surfactant flood, the injected slug of surfactant solution undergoes complex changes as it traverses the reservoir. The surfactant solution is diluted by mixing with reservoir oil and brine and by depletion of surfactant due to retention. Also, the reservoir salinity rarely is the same as that of the injected solution. Moreover, there is chromatographic separation of sulfonate and cosurfactant.When phase equilibrium between oil, brine, and injected surfactant is reached in the front portion of the slug, a microemulsion phase is formed. This phase behavior and its importance in oil recovery have been the subject of numerous papers in recent years. The microemulsion phase formed in the reservoir contacts fresh reservoir brine and oil and undergoes further changes. All these changes are accompanied by property changes of the phases that affect oil recovery.The objective of this paper is to investigate the properties of a blend of commercial petroleum sulfonates and its behavior in different environments. The phase volume behavior and changes in the properties of different phases and their effects on oil recovery were studied. This work was done as part of the design of a surfactant process for a field application. Therefore, a crude oil was used as the hydrocarbon phase. Experimental Procedures A blend of Petrostep 465 and 420 from Stepan Chemical Co. was used as the surfactant. An equal weight of each sulfonate on a 100% active basis was mixed. 1-pentanol from Union Carbide Corp. was used as a cosurfactant. Unless otherwise stated, a 50g/kg sulfonate concentration was used in the solution. We used symbols to denote the formulation. The first number in the symbol indicates the 1-pentanol concentration; the last number indicates the NaCl concentration. Thus, 15 P 10 means that the solution consists of 50 g/kg sulfonate, 15 g/kg 1-pentanol, and 10 g/kg NaCl. The sulfonate blend first was mixed with alcohol, and then the required amount of NaCl brine was added to make the solution. SPEJ P. 573^


1978 ◽  
Vol 18 (03) ◽  
pp. 167-172 ◽  
Author(s):  
V.K. Bansal ◽  
D.O. Shah

Abstract The addition of an ethoxylated sulfonate (EOR-200) and its effect on the salt tolerance and optimal salinity of formulations containing a petroleum sulfonate (TRS 10-410 or Petrostep-465) petroleum sulfonate (TRS 10-410 or Petrostep-465) and an alcohol was investigated. When salt concentration increases, the mixed surfactant formulations undergo the following changes: isotropic, birefringent, phase separation. The salt concentration required for phase separation increased with the fraction of the ethoxylated sulfonate in the formulation. When mixed surfactant formulations were equilibrated with an equal volume of oil (decane or hexadecane) a middle-phase microemulsion formed in a specific salinity range. The optimal salinity increased with the fraction of the ethoxylated sulfonate in the mixed surfactant formulations. At optimal salinity as high as 32-percent NaCl, these surfactant formulations exhibited ultra-low interfacial tension (10-2 to 10-3 dynes/cm). These formulations also showed that an increase in the solubilization parameter decreases the interfacial tension. parameter decreases the interfacial tension Introduction The potential use of petroleum sulfonates for tertiary oil recovery has been discussed and several patents have been issued during the past two decades. The solubilization, phase behavior and interfacial tension of petroleum sulfonates have been studied. Petroleum sulfonates are known to exhibit relatively low salt tolerance and a low value of optimal salinity (1- to 2-percent NACl). Dauben and Froning studied the effect of Amoco Wellaid 320 (ethoxylated alcohol) on a surfactant formulation that was primarily a petroleum sulfonate. They observed that surfactant formulations prepared using ethoxylated alcohols as cosurfactants exhibited improved temperature stability and were less sensitive to salts, compared with formulations prepared with isopropanol as a cosurfactant. Several prepared with isopropanol as a cosurfactant. Several patents were issued on the possible use of patents were issued on the possible use of ethoxylated alcohols and ethoxylated sulfonates in oil recovery formulations. This study reports the effect of blending an ethoxylated sulfonate (EOR-200) with a petroleum sulfonate (TRS 10-410 or Petrostep-465) on various properties of the mixed surfactant formulations (for properties of the mixed surfactant formulations (for examples, salt tolerance, optimal salinity, interfacial tension, and solubilization). MATERIALS AND METHODS Petroleum sulfonates TRS 10-410 and Petrostep-465 were supplied by Witco Chemicals and Stepan Petrostep-465 were supplied by Witco Chemicals and Stepan Chemicals, respectively. Ethoxylated sulfonate EOR-200 was supplied by Ethyl Corp. Paraffinic oils (n-hexadecane and n-decane) as well as 99-percent pure isobutanol and n-pentanol were purchased from Chemicals Samples Co. All purchased from Chemicals Samples Co. All surfactants were used as received. The average equivalent weight of TRS 10-410 and Petrostep-465 was 420 and 465, respectively, and the activity of surfactants was approximately 60 percent (as reported by the manufacturers). The molecular weight of EOR-200 was given as 523 by Ethyl and the sample contained 25.3 weight percent active solid surfactant. Aqueous solutions composed of Petrostep-465 (5 percent) and n-pentanol (2 percent) were prepared on the basis of weight. Aqueous surfactant solutions were equilibrated with the same volume of n-decane. Optimal salinity values were obtained using the approach described by Healy and Reed. The effect of EOR-200 on the properties of mixed surfactant formulations was studied by gradually replacing Petrostep-465 with EOR-200 and keeping the total surfactant concentration constant at 5 weight percent. Another surfactant formulation studied was composed of TRS 10-410 (5 percent) and IBA (3 percent). Optimal salinity was determined using percent). Optimal salinity was determined using n-hexadecane. TRS 10-410 was replaced gradually by EOR-200, keeping the total surfactant concentration constant at 5 weight percent. The systems studied are tabulated in Table 1. SPEJ P. 167


1979 ◽  
Vol 57 (3) ◽  
pp. 330-334
Author(s):  
Frank M. Kimmerle ◽  
Hugues Menard

Droptime measurements of aqueous and deuterated Et4NBr solutions indicate that the mercury/electrolyte interfacial tension differs by less than 1 mJ m−2 (dyn cm−1). Et4NBr is slightly more adsorbed from heavy water in dilute solutions, but the difference becomes relatively less important in concentrated electrolytes. This behaviour is interpreted in terms of interfacial transfer parameters and attributed to the nature of the solvent–solute interactions.


1976 ◽  
Vol 16 (03) ◽  
pp. 147-160 ◽  
Author(s):  
R.N. Healy ◽  
R.L. Reed ◽  
D.G. Stenmark

Abstract Economical microemulsion flooding inevitably involves microemulsion phases immiscible with oil or water, or both; oil recovery is largely affected by displacement efficiency during the immiscible regime. Therefore, it is essential to understand the role of interfacial tension in relation to multiphase microemulsion behavior. Three basic types of multiphase systems are identified and used to label phase transitions that occur when changes are made in salinity, temperature, oil composition, surfactant structure, cosolvent, and dissolved solids in the aqueous phase. Directional effects of these changes on phase behavior, interfacial tension, and solubilization parameter are tabulated for the alkyl aryl sufonates studied. A relationship between interfacial tension and phase behavior is established. This provides the phase behavior is established. This provides the basis for a convenient method for preliminary screening of surfactants for oil recovery. Interfacial tensions were found to correlate with the solubilization parameter for the various microemulsion phases, a result that can substantially reduce the number of interfacial tensions that must be determined experimentally for a given application. Introduction A previous paper established that microemulsion flooding is a locally miscible process until slug breakdown and is an immiscible, rate-dependent displacement thereafter; furthermore, for an effective flood, most of the oil recovered is acquired during the immiscible regime. An extensive study of single-phase regions defined classes of micellar structures for a particular surfactant; however, it was subsequently shown these did not affect oil recovery, provided viscous, lamellar structures were avoided. Optimal salinity was introduced as defining a ternary diagram having the least extensive multiphase region, a desirable feature in that locally miscible displacement is prolonged. Immiscible displacement after slug breakdown is known to depend on interfacial tension through its inclusion in the capillary number. A brief study showed chat interfacial tension varied widely throughout the multiphase region; accordingly, it is anticipated that oil recovery will depend on details of multiphase behavior in relation to interfacial tension, as well as on injection composition. Consider a flood sufficiently advanced that the microemulsion slug has broken down. A microemulsion phase remains that is immiscible with water or oil, phase remains that is immiscible with water or oil, or both, and displacement has assumed an immiscible character. The problem is twofold: to design a microemulsion slug that effectively displaces oil at the front and that is effectively displaced by water at the back. Both aspects are essential and, therefore, both microemulsion-oil and microemulsion-water interfacial tensions must be very low. The condition where these two tensions are low and equal will be of particular significance. The purpose of this paper is to explore physicochemical properties of multiphase physicochemical properties of multiphase microemulsion systems with a view toward understanding immiscible aspects of microemulsion flooding, and with the expectation of developing systematic screening procedures useful for design of optimal floods. Equilibration is an essential part of this study. Even the simplest of these systems is so complex it may well happen that nonequilibrium effects will never be understood sufficiently to be usefully accommodated in mathematical simulation of microemulsion flooding. In any event, equilibration, although time consuming, leads to a coherent picture of multiphase behavior that can be correlated with flooding results. Multiphase behavior of "simple" ternary systems divides into three basic classes. Dependence of phase behavior on salinity, with respect to these phase behavior on salinity, with respect to these classes, leads to correlations of interfacial tension with the solubilization parameter. These correlations are studied in relation to surfactant structure, temperature, cosolvents, oil composition, and brine composition. Optimal salinity again plays an important role, especially in relation to interfacial tension. SPEJ P. 147


1981 ◽  
Vol 21 (05) ◽  
pp. 581-592 ◽  
Author(s):  
Creed E. Blevins ◽  
G. Paul Willhite ◽  
Michael J. Michnick

Abstract The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system.The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H + M, and M + W regions meet. On this line, the microemulsion (M*) is saturated with hydrocarbon, brine, and alcohol for a particular sulfonate content. A H + M region exists above the three-phase region, and an M + W region exists below it.Relationships were found between the alcohol concentration of the middle phase and the sulfonate/alcohol and sulfonate/hydrocarbon ratios in the middle phase. These correlations define the curve that represents the locus of saturated microemulsions in the quaternary phase diagram. Alcohol contents of excess oil and brine phases also were correlated with alcohol in the middle phase.Pseudoternary diagrams for sulfonates are presented to provide insight into the evolution of the three-phase region with salinity. Surfactants include Mahogany AA, Phillips 51918, Suntech V, and Stepan Petrostep(TM) 500. Differences between phase diagrams follow trends inferred from comparisons of equivalent weights, mono-/disulfonate content, optimal salinity, and EPACNUS values. Introduction The displacement of oil from a porous rock by microemulsions is a complex process. As the microemulsion flows through the rock, it mixes with and/or solubilizes oil and water. The composition of the microemulsion is altered by adsorption of sulfonate, leading to expulsion of water and/or oil. Multiphase regions are encountered where phases may flow at different velocities depending on the fluid/rock interactions. Knowledge of phase behavior of microemulsion systems is required to understand the displacement mechanisms, to model process performance, and to select suitable compositions for injection.Microemulsions used in oil recovery processes consist of five components: oil, water, salt, surfactant (usually a petroleum sulfonate and a cosurfactant (usually an alcohol). Brine frequently is considered to be a pseudocomponent. When this assumption is valid, a microemulsion may be studied as a four-component system.Windsor developed a qualitative explanation and classification scheme for microemulsion phase behavior. Healy and Reed showed that Windsor's concepts were applicable to microemulsions used in oil recovery processes. Healy et al. introduced the concept of optimal salinity to define a particular characteristic of surfactant system. The optimal salinity for phase behavior was defined as the salinity where the middle phase of a three-phase system has equal solubility of oil and brine. They also found that optimal salinity determined in this manner was close to the salinity where the interfacial tension between the upper and middle phases was equal to the interfacial tension between the middle and lower phases.Salager et al. developed a correlation of optimal salinity data for a particular surfactant. SPEJ P. 581^


2016 ◽  
Vol 36 (01) ◽  
pp. 38
Author(s):  
Sri Hidayati ◽  
Pudji Permadi ◽  
Hestuti Eni

An experiment of sulfonation process of methyl ester to produce methyl ester sulfonates (MES) was caried out using methyl ester palm oil in factorial design and NaHSO as sulfonating agent with variation of ratio mol NaHSO : methyl ester (1:1.25, 1:1.5, 1:1.75 and 1:2 ) and sulfonation time (3 hour (L1), 4.5 hour (L2) and 6 hour (L3). The result showed that the best sulfonation condition present in 1:1,5 mol ratio and sulfonation time of 4,5 hour. The best characteristic of MES was produced emulsion stability of 68.25%, acid value of 2.57 mg KOH/g, iod value 10.91 g 1od/100 g sample, interfacial tension of 1.806 dyne/cm at MES concentration of 1% (w/w). The optimal salinity occured at concentration of 20.000 ppm which 1FT value of 0.0055 dyne/cm. Heating at a temperature of 800 C for 30 days with the addition of 2 3.Keywords: MES, sulfonation, NaHSO ABSTRAKSebuah penelitian tentang proses produksi metil ester sulfonat menggunakan bahan baku metil ester minyak kelapa sawit dilakukan secara faktorial menggunakan NaHSO sebagai agen pensulfonasi dengan variasi rasio mol NaHSO 1:1,25, 1:1,5, 1:1,75 dan 1:2 dan lama sulfonasi.dengan variasi 3; 45; dan 6 jam. Hasil penelitian menunjukkan bahwa kondisi proses sulfonasi terbaik terdapat pada rasio metil ester dan mol reaktan 1:1,5 dan  lama reaksi  4,5 jam dan suhu reaksi lOOoC yang menghasilkan nilai stabilitas emulsi 68,25%, bilangan asam 2,57 mg KOH/g sampel, bilangan iod 10,91 g 1od/100 g sampel. Konsentrasi metil ester sulfonat MES terbaik untuk menghasilkan 1FT terendah adalah 1% (b/b) yaitu 1,806 dyne/cm, salinitas optimal terjadi pada 20.000 ppm NaCl dengan nilai 1FT 0,0055 dyne/cm. 0,098 dyne/cm.Kata kunci: MES, proses sulfonasi, NaHSO 


1999 ◽  
Vol 96 (12) ◽  
pp. 1745-1755
Author(s):  
DAVID L. CEDENO, JINGPING PENG, DOVIE REY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document