Catalytic Filter for Continuous and Selective Ethanol Removal Prior to Gas Sensing

ACS Sensors ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1058-1067 ◽  
Author(s):  
Andreas T. Güntner ◽  
Ines C. Weber ◽  
Sotiris E. Pratsinis
Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2020 ◽  
Author(s):  
Carina Esteves ◽  
Susana Palma ◽  
Ana Rita Oliveira ◽  
Efthymia Ramou ◽  
Inês Moreira ◽  
...  

2020 ◽  
Author(s):  
Carina Esteves ◽  
Susana Palma ◽  
Ana Rita Oliveira ◽  
Efthymia Ramou ◽  
Inês Moreira ◽  
...  

2015 ◽  
Vol 135 (8) ◽  
pp. 317-322
Author(s):  
Mitsuaki Yano ◽  
Yousuke Hirahara ◽  
Jiro Terada ◽  
Shigehiko Sasa ◽  
Sigeru Omatu
Keyword(s):  

1996 ◽  
Vol 444 ◽  
Author(s):  
F. Dimeo ◽  
S. Semancik ◽  
R. E. Cavicchi ◽  
J. S. Suehle ◽  
N. H. Tea ◽  
...  
Keyword(s):  

Abstract


2010 ◽  
Vol 38 (1) ◽  
pp. 80-98 ◽  
Author(s):  
M. Gerster ◽  
C. Fagouri ◽  
E. Peregi

Abstract One challenge facing green tire technology is to achieve good silica hydrophobation/dispersion within the polymer matrix without a detrimental increase in the rubber compound’s viscosity during compounding. This phenomenon is well known to be induced by premature and unwanted coupling and/or crosslinking of the traditional coupling agents. The current state-of-the-art polysulfides silanes, bis(3-triethoxysilylpropyl)tetrasulfide and to a lesser extent bis(3-triethoxysilylpropyl)disulfide (“Product Application—VP Si 75/VP X 75-S in the Rubber Industry,” Degussa Hüls Report No. PA 723.1E), need to be carefully incorporated with careful temperature control during the rubber compounding to prevent this “scorchy” behavior. This paper will present novel monofunctional silanes which are suited for preparing highly silica-loaded rubber compounds of superior processability, while applying fewer mixing passes, thereby reducing mixing times which can lead to improved productivity and cost savings. Additionally, these safer coupling agents can be processed at higher temperatures which can, again, lead to reduced mixing time and better ethanol removal thereby improving the tire’s physical properties and reducing the volatile organic compounds generated during the tire’s use. The rubber compounds produced using these monofunctional silanes are characterized by lower Mooney viscosity and improved processability. Advantageously, within these novel chemical classes of coupling agents, selective functionalization of the silanes allows production of tailor-made coupling agents which can respond to the specific requirements of the tire industry (Vilgis, T. A. and Heinrich, G., “Die Physic des Autoreifens,” Physikalische Blätter, Vol. 57, 2001, pp. 1–7).


2013 ◽  
Vol 28 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Shuang XU ◽  
Ying YANG ◽  
Hong-Yuan WU ◽  
Chao JIANG ◽  
Li-Qiang JING ◽  
...  

2019 ◽  
Vol 11 (5) ◽  
pp. 05040-1-05040-4
Author(s):  
Sumanta Kumar Tripathy ◽  
◽  
Sanjay Kumar ◽  
Divya Aparna Narava ◽  
◽  
...  

Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Sign in / Sign up

Export Citation Format

Share Document