Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles

Author(s):  
Ka Ho Chan ◽  
John Anawati ◽  
Monu Malik ◽  
Gisele Azimi
2018 ◽  
Vol 204 ◽  
pp. 437-446 ◽  
Author(s):  
Jialiang Zhang ◽  
Juntao Hu ◽  
Wenjuan Zhang ◽  
Yongqiang Chen ◽  
Chengyan Wang

2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19175-19186
Author(s):  
Jiuchun Jiang ◽  
Xinwei Cong ◽  
Shuowei Li ◽  
Caiping Zhang ◽  
Weige Zhang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 464-469
Author(s):  
Christian Scheller ◽  
Steffen Blömeke ◽  
Mathias Nippraschk ◽  
Kerstin Schmidt ◽  
Mark Mennenga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document