Extended Catalyst Lifetime Testing for HTL Biocrude Hydrotreating to Produce Fuel Blendstocks from Wet Wastes

2021 ◽  
Vol 9 (38) ◽  
pp. 12825-12832
Author(s):  
Senthil Subramaniam ◽  
Daniel M. Santosa ◽  
Casper Brady ◽  
Marie Swita ◽  
Karthikeyan K. Ramasamy ◽  
...  
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahmed Abuelnaga ◽  
Mehdi Narimani ◽  
Amir Sajjad Bahman

2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


2007 ◽  
Vol 27 (2) ◽  
pp. 209-233 ◽  
Author(s):  
Enrique López Droguett ◽  
Ali Mosleh

In accelerated lifetime testing (ALT) the assumption of stress-independent spread in life is commonly used and accepted because the resulting models are typically easier to use and data or past experience suggest that such a constrain is sometimes valid. However in many situations and with a variety of products the spread in life does depend on stress, i.e., the failure mechanism is not the same for all stress levels. In this paper the assessment of product time to failure at service conditions from ALT with stress-dependent spread is addressed by formulating a Bayesian framework where the time to failure follows a Weibull distribution, scale parameter dependency on stress is given by the Power Law, and two cases for the dependency between shape parameter and stress are discussed: linear relationship and, in order to allow a comparative analysis, stress-independent shape parameter. A previously published dataset is used to illustrate the procedure.


2017 ◽  
Vol 34 (20) ◽  
pp. 205009 ◽  
Author(s):  
D Hollington ◽  
J T Baird ◽  
T J Sumner ◽  
P J Wass

2006 ◽  
Vol 129 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Fabrice Guerin ◽  
Ridha Hambli

The constantly increasing market requirements of high quality vehicles ask for the automotive manufacturers to perform lifetime testing to verify the reliability levels of new products. A common problem is that only a small number of examples of a component of system can be tested. In the automotive applications, mechanical components subjected to cyclic loading have to be designed against fatigue. Boot seals are used to protect velocity joint and steering mechanisms in automobiles. These flexible components must accommodate the motions associated with angulation of the steering mechanism. Some regions of the boot seal are always in contact with an internal metal shaft, while other areas come into contact with the metal shaft during angulation. In addition, the boot seal may also come into contact with itself, both internally and externally. The contacting regions affect the performance and longevity of the boot seal. In this paper, the Bayesian estimation of lognormal distribution parameters (usually used to define the fatigue lifetime of rubber components) is studied to improve the accuracy of estimation in incorporating the available knowledge on the product. In particular, the finite element results and expert belief are considered as prior knowledge. For life time prediction by finite element method, a model based on Brown–Miller law was developed for the boot seal rubber-like material.


Sign in / Sign up

Export Citation Format

Share Document