scholarly journals A Review on IGBT Module Failure modes and Lifetime Testing

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahmed Abuelnaga ◽  
Mehdi Narimani ◽  
Amir Sajjad Bahman
2013 ◽  
Vol 655-657 ◽  
pp. 1576-1580 ◽  
Author(s):  
Pu Zhen He ◽  
Li Bing Zheng ◽  
Hua Chao Fang ◽  
Chun Lei Wang ◽  
Jun Hua

Al wire bonding lift-off and solder delamination are the main failure modes of IGBT module. When the severity of the failure mode is different, the temperature character of IGBT is also different. This paper presents a methodology based on 3D electro-thermal coupling finite elements modeling intended to analyze the relation between the failure degree and the temperature, and compares the influence degree of two kinds of failure modes to the performance of IGBT module. The results suggest the bonding lift-off has more influence than the solder delamination on the same load and boundary conditions. This method and the corresponding results help to evaluate these failure modes how they influence the performance of IGBT, determine the failure, establish the failure standards and find the optimization of structure design.


2018 ◽  
Vol 64 ◽  
pp. 04006
Author(s):  
Tang Xinling ◽  
Pan Yan ◽  
Chen Yanfang ◽  
Fu Pengyu ◽  
Zhao Zhibin

High voltage IGBT module is the ideal option for the VSC-HVDC power transmission application. At present, wire-bonded technology and press-pack technology are available packaging technologies for high voltage IGBT. The press-pack IGBTs have such advantages as low inductance, low thermal impedance and short circuit failure mode than the wire-bonded IGBT module, which especially suit for high voltage power transmission application by series connection. However, the electrical insulation failure modes of press-pack IGBTs are much less known with limited literature published. In this paper, we presented the electric field analysis of a 3D press-pack IGBT model under DC rating voltage test condition. The electric field distribution of the press-pack IGBT stack was solved as an electrostatic problem by employing the finite element method. The results revealed the potential electrical insulation failure modes of the press-pack IGBTs: corona discharge at the edge of silver plate, partial discharge at the micro gap between die and PEEK frame and creeping discharge at the surface of PEEK frame.


2012 ◽  
Vol 616-618 ◽  
pp. 1689-1692
Author(s):  
Li Bing Zheng ◽  
Han Li ◽  
Peng Yun Jin ◽  
Hua Chao Fang ◽  
Chun Lei Wang ◽  
...  

Al wire bonding lift-off is one of the main failure modes of IGBT module. When the severity of the failure mode is different, the temperature character of IGBT is also different. This paper presents a methodology based on 3D electro-thermal coupling finite elements modeling intended to analyze the relation between the failure degree and the temperature, and compares the influence degree of Al wire bonding lift-off to the performance of IGBT module. This method and the corresponding results help to evaluate Al wire bonding lift-off how they influence the performance of IGBT, determine the failure, establish the failure standards and find the optimization of structure design.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


2008 ◽  
Vol 128 (4) ◽  
pp. 677-682 ◽  
Author(s):  
Taku Takaku ◽  
Noriyuki Iwamuro ◽  
Yoshiyuki Uchida ◽  
Ryuichi Shimada

1996 ◽  
Vol 451 ◽  
Author(s):  
Gerald S. Frankel

ABSTRACTCorrosion of thin film structures commonly used in electronic and magnetic devices is discussed. Typical failure modes are presented, and galvanic corrosion is discussed in some detail since it is one common problem with such devices. A graphical explanation for the determination of the ohmic potential drop during galvanic corrosion is presented. The corrosion problem of thin film disks is shown to have changed during the past ten years owing to changes in disk structure. The corrosion susceptibility of two antiferromagnetic alloys used for exchange coupling to soft magnetic layers is discussed.


Sign in / Sign up

Export Citation Format

Share Document